
Università degli Studi di Torino

Computer Science Department

Ph.D. Program in Computer Science

Cycle XXXIII

Exception Handling for Robust Multi-Agent Systems

Stefano Tedeschi

October 15th, 2021

Outline

1. Introduction

2. Background

3. A Proposal for Exception Handling in Multi-Agent Systems

4. Exception Handling in JaCaMo

5. Discussion and Conclusions

1

Introduction

What is this presentation about?

We outline a vision of how robustness in Multi-Agent Systems (MAS) can be granted as a

design property

We present a model for MAS organizations explicitly encompassing the notion of exception

→ Exception handling is grafted inside the normative system of the organization

The mechanism relies on abstractions that are seamlessly integrated with organizational concepts:

• Responsibilities • Goals • Norms

We exemplify our vision on the JaCaMo1 multi-agent platform

1Olivier Boissier et al. Multi-agent oriented programming: programming multi-agent systems using JaCaMo. MIT Press, 2020.

2

Motivation

In a MAS, the agent detecting a perturbation:

1. May not be equipped with the means to handle it

2. May not be able to determine its impact over the overall distributed execution

!Environment

→ No structured way for collecting and propagating feedback about encountered situations

→ No clear distribution of responsibilities concerning the handling of perturbations

3

Motivation

In a MAS, the agent detecting a perturbation:

1. May not be equipped with the means to handle it

2. May not be able to determine its impact over the overall distributed execution

!

Feedback

Environment

→ No structured way for collecting and propagating feedback about encountered situations

→ No clear distribution of responsibilities concerning the handling of perturbations

3

Motivation

In a MAS, the agent detecting a perturbation:

1. May not be equipped with the means to handle it

2. May not be able to determine its impact over the overall distributed execution

!

Feedback

Handling

Environment

✓

→ No structured way for collecting and propagating feedback about encountered situations

→ No clear distribution of responsibilities concerning the handling of perturbations
3

Robustness and Exception Handling

Robustness

The degree to which a system or component can function correctly in the presence of invalid

inputs or stressful environmental conditions2

One mechanism that supports robustness is exception handling

→ Equipping the system with the capabilities to tackle classes of abnormal situations

→ Benefits in terms of modularity and decoupling

Current MAS architectures fall short in addressing robustness in a systematic way

→ No mechanisms for exception handling, as for programming languages or the actor model

2“ISO/IEC/IEEE International Standard - Systems and software engineering – Vocabulary”. In: ISO/IEC/IEEE 24765:2010(E) (2010), pp. 1–418.

4

Robustness and Exception Handling

Robustness

The degree to which a system or component can function correctly in the presence of invalid

inputs or stressful environmental conditions2

One mechanism that supports robustness is exception handling

→ Equipping the system with the capabilities to tackle classes of abnormal situations

→ Benefits in terms of modularity and decoupling

Current MAS architectures fall short in addressing robustness in a systematic way

→ No mechanisms for exception handling, as for programming languages or the actor model

2“ISO/IEC/IEEE International Standard - Systems and software engineering – Vocabulary”. In: ISO/IEC/IEEE 24765:2010(E) (2010), pp. 1–418.

4

Robustness and Exception Handling

Robustness

The degree to which a system or component can function correctly in the presence of invalid

inputs or stressful environmental conditions2

One mechanism that supports robustness is exception handling

→ Equipping the system with the capabilities to tackle classes of abnormal situations

→ Benefits in terms of modularity and decoupling

Current MAS architectures fall short in addressing robustness in a systematic way

→ No mechanisms for exception handling, as for programming languages or the actor model

2“ISO/IEC/IEEE International Standard - Systems and software engineering – Vocabulary”. In: ISO/IEC/IEEE 24765:2010(E) (2010), pp. 1–418.

4

Exception Handling in MAS

Research Objective

To present an exception handling mechanism for use in multi-agent systems,

encompassing exceptions as first-class elements, and based on the notions of responsibility

and feedback

MAS organizations are built upon responsibilities

→ Naturally suited to encompass an exception handling mechanism

Proposal

When joining an organization, agents will be asked to take on the responsibilities:

1. For providing feedback about the context where exceptions are detected

2. If appointed, for handling such exceptions once the needed information is available

5

Exception Handling in MAS

Research Objective

To present an exception handling mechanism for use in multi-agent systems,

encompassing exceptions as first-class elements, and based on the notions of responsibility

and feedback

MAS organizations are built upon responsibilities

→ Naturally suited to encompass an exception handling mechanism

Proposal

When joining an organization, agents will be asked to take on the responsibilities:

1. For providing feedback about the context where exceptions are detected

2. If appointed, for handling such exceptions once the needed information is available

5

Exception Handling in MAS

Research Objective

To present an exception handling mechanism for use in multi-agent systems,

encompassing exceptions as first-class elements, and based on the notions of responsibility

and feedback

MAS organizations are built upon responsibilities

→ Naturally suited to encompass an exception handling mechanism

Proposal

When joining an organization, agents will be asked to take on the responsibilities:

1. For providing feedback about the context where exceptions are detected

2. If appointed, for handling such exceptions once the needed information is available

5

Background

Exception Handling in Programming Languages

Among the first to address explicitly

the concern of exception handling3

Dedicated language constructs

enable a systematic treatment of

perturbations

When a perturbation is detected,

the exection flow is deviated to a

handler

The search for a suitable handler

follows the program call stack

p u b l i c s t a t i c v o i d m1 (. . .) throws E x c e p t i o n {
i f (. . .) throw new E x c e p t i o n (. . .) ;

}

p u b l i c s t a t i c v o i d m2 {
t r y {

m1 (. . .) ;

}
catch (E x c e p t i o n e) {

. . .

}
}

3John B. Goodenough. “Exception Handling: Issues and a Proposed Notation”. In: Communications of the ACM 18.12 (1975), pp. 683–696

6

Exception Handling in Programming Languages

Among the first to address explicitly

the concern of exception handling3

Dedicated language constructs

enable a systematic treatment of

perturbations

When a perturbation is detected,

the exection flow is deviated to a

handler

The search for a suitable handler

follows the program call stack

p u b l i c s t a t i c v o i d m1 (. . .) throws E x c e p t i o n {
i f (. . .) throw new E x c e p t i o n (. . .) ;

}

p u b l i c s t a t i c v o i d m2 {
t r y {

m1 (. . .) ;

}
catch (E x c e p t i o n e) {

. . .

}
}

3John B. Goodenough. “Exception Handling: Issues and a Proposed Notation”. In: Communications of the ACM 18.12 (1975), pp. 683–696

6

Exception Handling in Programming Languages

Among the first to address explicitly

the concern of exception handling3

Dedicated language constructs

enable a systematic treatment of

perturbations

When a perturbation is detected,

the exection flow is deviated to a

handler

The search for a suitable handler

follows the program call stack

p u b l i c s t a t i c v o i d m1 (. . .) throws E x c e p t i o n {
i f (. . .) throw new E x c e p t i o n (. . .) ;

}

p u b l i c s t a t i c v o i d m2 {
t r y {

m1 (. . .) ;

}
catch (E x c e p t i o n e) {

. . .

}
}

3John B. Goodenough. “Exception Handling: Issues and a Proposed Notation”. In: Communications of the ACM 18.12 (1975), pp. 683–696

6

Exception Handling in Programming Languages

Among the first to address explicitly

the concern of exception handling3

Dedicated language constructs

enable a systematic treatment of

perturbations

When a perturbation is detected,

the exection flow is deviated to a

handler

The search for a suitable handler

follows the program call stack

p u b l i c s t a t i c v o i d m1 (. . .) throws E x c e p t i o n {
i f (. . .) throw new E x c e p t i o n (. . .) ;

}

p u b l i c s t a t i c v o i d m2 {
t r y {

m1 (. . .) ;

}
catch (E x c e p t i o n e) {

. . .

}
}

3John B. Goodenough. “Exception Handling: Issues and a Proposed Notation”. In: Communications of the ACM 18.12 (1975), pp. 683–696

6

Exception Handling in the Actor Model

All computational entities are modeled as independent actors

→ Communication through message passing

→ Organized into a supervision hierarchy

Supervisor
Actor

Supervised
Actors

Actors can notify exceptions to their parent actor

The parent should implement a suitable supervision strategy (or escalate the exception)

7

Exception Handling in the Actor Model

All computational entities are modeled as independent actors

→ Communication through message passing

→ Organized into a supervision hierarchy

Supervisor
Actor

Supervised
Actors

Actors can notify exceptions to their parent actor

The parent should implement a suitable supervision strategy (or escalate the exception)

7

Exception Handling in the Actor Model

All computational entities are modeled as independent actors

→ Communication through message passing

→ Organized into a supervision hierarchy

Supervisor
Actor

Supervised
Actors !

Actors can notify exceptions to their parent actor

The parent should implement a suitable supervision strategy (or escalate the exception)

7

Exception Handling in Business Process Management

Business Process

A set of activities that are performed in coordination in an organizational and technical

environment. These activities jointly realize a business goal.4

Different graphical notations to express process models → BPMN5 is de facto standard

Error events model the occurrence of errors

during the execution of an activity

BPMN Sample Error

A B

C

4Mathias Weske. Business Process Management: Concepts, Languages, Architectures. Springer, 2007.

5Stephen A. White. “Introduction to BPMN”. In: IBM Cooperation 2.0 (2004).

8

Exception Handling in Business Process Management

Business Process

A set of activities that are performed in coordination in an organizational and technical

environment. These activities jointly realize a business goal.4

Different graphical notations to express process models → BPMN5 is de facto standard

Error events model the occurrence of errors

during the execution of an activity

BPMN Sample Error

A B

C

4Mathias Weske. Business Process Management: Concepts, Languages, Architectures. Springer, 2007.

5Stephen A. White. “Introduction to BPMN”. In: IBM Cooperation 2.0 (2004).

8

Exception Handling in Business Process Management

Business Process

A set of activities that are performed in coordination in an organizational and technical

environment. These activities jointly realize a business goal.4

Different graphical notations to express process models → BPMN5 is de facto standard

Error events model the occurrence of errors

during the execution of an activity

BPMN Sample Error

A B

C

4Mathias Weske. Business Process Management: Concepts, Languages, Architectures. Springer, 2007.

5Stephen A. White. “Introduction to BPMN”. In: IBM Cooperation 2.0 (2004).

8

Exception Handling in the MAS research

Multiple approaches have been proposed, but without clear consensus

• Guardian6

• Sentinels7

• Exceptions in the agent execution model8

• Failures events in SARL

• Contingency plans in Jason

Main difficulty → Conjugate exception handling with the peculiarities of the agent paradigm

• Autonomy • Heterogeneity • Openness • Distribution • Situatedness

6Anand Tripathi and Robert Miller. “Exception Handling in Agent-Oriented Systems”. In: Advances in Exception Handling Techniques. Springer, 2001, pp. 128–146.

7Staffan Hägg. “A sentinel approach to fault handling in multi-agent systems”. In: Multi-Agent Systems Methodologies and Applications. Springer, 1997, pp. 181–195.

8Eric Platon, Nicolas Sabouret, and Shinichi Honiden. “An architecture for exception management in multiagent systems”. In: IJAOSE 2.3 (2008), pp. 267–289.

9

Exception Handling in the MAS research

Multiple approaches have been proposed, but without clear consensus

• Guardian6

• Sentinels7

• Exceptions in the agent execution model8

• Failures events in SARL

• Contingency plans in Jason

Main difficulty → Conjugate exception handling with the peculiarities of the agent paradigm

• Autonomy • Heterogeneity • Openness • Distribution • Situatedness

6Anand Tripathi and Robert Miller. “Exception Handling in Agent-Oriented Systems”. In: Advances in Exception Handling Techniques. Springer, 2001, pp. 128–146.

7Staffan Hägg. “A sentinel approach to fault handling in multi-agent systems”. In: Multi-Agent Systems Methodologies and Applications. Springer, 1997, pp. 181–195.

8Eric Platon, Nicolas Sabouret, and Shinichi Honiden. “An architecture for exception management in multiagent systems”. In: IJAOSE 2.3 (2008), pp. 267–289.

9

A Proposal for Exception

Handling in Multi-Agent Systems

Responsibility and Feedback in Exception Handling

Two important aspects of exception handling:

1. Two parties

• The former is responsible for raising an exception

• The latter is responsible for handling it

2. It captures the need for some feedback from the former to the latter that allows coping

with the exception

Exception handling is in essence a matter of responsibility distribution

Multi-agent organizations are built upon responsibility

10

Responsibility and Feedback in Exception Handling

Two important aspects of exception handling:

1. Two parties

• The former is responsible for raising an exception

• The latter is responsible for handling it

2. It captures the need for some feedback from the former to the latter that allows coping

with the exception

Exception handling is in essence a matter of responsibility distribution

Multi-agent organizations are built upon responsibility

10

Responsibility and Feedback in Exception Handling

Two important aspects of exception handling:

1. Two parties

• The former is responsible for raising an exception

• The latter is responsible for handling it

2. It captures the need for some feedback from the former to the latter that allows coping

with the exception

Exception handling is in essence a matter of responsibility distribution

Multi-agent organizations are built upon responsibility

10

Responsibility and Feedback in Exception Handling

Two important aspects of exception handling:

1. Two parties

• The former is responsible for raising an exception

• The latter is responsible for handling it

2. It captures the need for some feedback from the former to the latter that allows coping

with the exception

Exception handling is in essence a matter of responsibility distribution

Multi-agent organizations are built upon responsibility

10

Responsibility and Feedback in Exception Handling

Two important aspects of exception handling:

1. Two parties

• The former is responsible for raising an exception

• The latter is responsible for handling it

2. It captures the need for some feedback from the former to the latter that allows coping

with the exception

Exception handling is in essence a matter of responsibility distribution

Multi-agent organizations are built upon responsibility

10

MAS Organizations

Key features of many organizational models:

• Decomposition of the organizational task

• Normative system

Norms shape the scope of the responsibilities that agents take when joining the organization

→ What agents should do to contribute to the achievement of the organizational task

Agent LevelOrganizational Level
adopt/leave

take ok/leave

achieve/fail

create/delete

concept mapping

sub-task

Responsibility Task

Internal Goal

Agent

sub-group

NormRole

Group Organization

11

Introducing Exceptions

Main idea → Review the basic mechanism of exception handling in terms of responsibilities

When joining an organization, agents are asked to take on the responsibilities not only for

organizational tasks, but also:

1. For rising exceptions when they encounter problems in fulfilling such responsibilities

2. For handling some of the exceptions raised from others

Norms govern these additional responsibilities, as well

→ Obligations issued when necessary

12

Introducing Exceptions

Main idea → Review the basic mechanism of exception handling in terms of responsibilities

When joining an organization, agents are asked to take on the responsibilities not only for

organizational tasks, but also:

1. For rising exceptions when they encounter problems in fulfilling such responsibilities

2. For handling some of the exceptions raised from others

Norms govern these additional responsibilities, as well

→ Obligations issued when necessary

12

Introducing Exceptions

Main idea → Review the basic mechanism of exception handling in terms of responsibilities

When joining an organization, agents are asked to take on the responsibilities not only for

organizational tasks, but also:

1. For rising exceptions when they encounter problems in fulfilling such responsibilities

2. For handling some of the exceptions raised from others

Norms govern these additional responsibilities, as well

→ Obligations issued when necessary

12

Exception Handling Model

13

Exception Handling Model

Recovery Strategy
• When and how an exception is

to be raised and handled
• Reified as norms in the

normative program

13

Exception Handling Model

Notification Policy
• When the exception must be raised
• What kind of information must be produced
• Encompasses a must-notify-when condition

encoding the exceptional situation

13

Exception Handling Model

Throwing Task
• Organizational task of raising the exception
• Obligations to pursue throwing tasks are

issued when perturbations occur

13

Exception Handling Model

Exception Spec
• Encodes the kind of information to be

produced by the agent raising the exception

13

Exception Handling Model

Handling Policy
• Specifies a way in which the

exception must be handled
• Characterized by a condition

expressing the state of the world in
which the policy is applicable

13

Exception Handling Model

Catching Task
• Course of action to

handle the exception
• Obligations are issued

when the needed
information is available

13

Exception Lifecycle

Exception

Handler agent(s)

Raising agent(s)

Environment

Organization

Perturbation

Throwing
task enabled

Obligation(Throwing
task) issued

Throw

Obligation(Catching
task) issued

Catch

Catching task
enabled

Active Raised HandledNull

Execution flow

14

Exception Handling in JaCaMo

JaCaMo Basics

JaCaMo is a well-known framework for the development of multi-agent organizations

It integrates three multi-agent dimensions:

• Agents → Jason9

• Environments → CArtAgO10

• Organizations → Moise11

Its organizational model does not include any mechanism for exception handling

9Rafael H. Bordini, Jomi F. Hübner, and Michael Wooldridge. Programming multi-agent systems in AgentSpeak using Jason. John Wiley & Sons, 2007.

10Alessandro Ricci et al. “Environment Programming in CArtAgO”. In: Multi-Agent Programming: Languages, Tools and Applications. Springer, 2009, pp. 259–288.

11Jomi F. Hübner, Jaime S. Sichman, and Olivier Boissier. “Developing Organised Multiagent Systems Using the MOISE+ Model: Programming Issues at the System and Agent

Levels”. In: International Journal of Agent-Oriented Software Engineering 1.3/4 (2007), pp. 370–395.

15

JaCaMo Basics

JaCaMo is a well-known framework for the development of multi-agent organizations

It integrates three multi-agent dimensions:

• Agents → Jason9

• Environments → CArtAgO10

• Organizations → Moise11

Its organizational model does not include any mechanism for exception handling

9Rafael H. Bordini, Jomi F. Hübner, and Michael Wooldridge. Programming multi-agent systems in AgentSpeak using Jason. John Wiley & Sons, 2007.

10Alessandro Ricci et al. “Environment Programming in CArtAgO”. In: Multi-Agent Programming: Languages, Tools and Applications. Springer, 2009, pp. 259–288.

11Jomi F. Hübner, Jaime S. Sichman, and Olivier Boissier. “Developing Organised Multiagent Systems Using the MOISE+ Model: Programming Issues at the System and Agent

Levels”. In: International Journal of Agent-Oriented Software Engineering 1.3/4 (2007), pp. 370–395.

15

JaCaMo Basics

JaCaMo is a well-known framework for the development of multi-agent organizations

It integrates three multi-agent dimensions:

• Agents → Jason9

• Environments → CArtAgO10

• Organizations → Moise11

Its organizational model does not include any mechanism for exception handling

9Rafael H. Bordini, Jomi F. Hübner, and Michael Wooldridge. Programming multi-agent systems in AgentSpeak using Jason. John Wiley & Sons, 2007.

10Alessandro Ricci et al. “Environment Programming in CArtAgO”. In: Multi-Agent Programming: Languages, Tools and Applications. Springer, 2009, pp. 259–288.

11Jomi F. Hübner, Jaime S. Sichman, and Olivier Boissier. “Developing Organised Multiagent Systems Using the MOISE+ Model: Programming Issues at the System and Agent

Levels”. In: International Journal of Agent-Oriented Software Engineering 1.3/4 (2007), pp. 370–395.

15

Jason, CArtAgO and Moise

happy (bob) .

! say (h e l l o) .

+! sa y (X)

: happy (bob)

<− . p r i n t (X) .

// . . .

Sample Jason agent

p u b l i c c l a s s Counter extends A r t i f a c t {
v o i d i n i t (i n t i n i t i a l V a l u e) {

d e f i n e O b s P r o p e r t y (” count ” ,

i n i t i a l V a l u e) ;

}

@OPERATION

v o i d i n c () {
ObsProperty prop =

g e t O b s P r o p e r t y (” count ”) ;

prop . updateVa lue (prop . i n t V a l u e () + 1) ;

}
}

Sample artifact in CArtAgO

<o r g a n i s a t i o n a l−s p e c i f i c a t i o n .. . >

<s t r u c t u r a l −s p e c i f i c a t i o n>

<r o l e−d e f i n i t i o n s>

. . .

</r o l e−d e f i n i t i o n s>

<group−s p e c i f i c a t i o n i d =”...”>

. . .

</group−s p e c i f i c a t i o n>

</s t r u c t u r a l −s p e c i f i c a t i o n>

<f u n c t i o n a l−s p e c i f i c a t i o n>

<scheme i d =”...”>

<g o a l i d =”...”>

. . .

</goa l>

<m i s s i o n i d =”...”>

. . .

</m i s s i o n>

</scheme>

</f u n c t i o n a l−s p e c i f i c a t i o n>

<normat ive−s p e c i f i c a t i o n>

<norm . . . />

. . .

</normat ive−s p e c i f i c a t i o n>

</o r g a n i s a t i o n a l−s p e c i f i c a t i o n>

Sample org. spec. in Moise

16

Extending JaCaMo for Exception Handling

• The extension mostly concerns the organizational dimension

→ The Moise component

• Changes are as conservative as possible

→ When no recovery strategy is specified, we fall back to standard JaCaMo

• We satisfy three needs

→ Specify recovery strategies within an organization

→ Translate recovery strategies into a corresponding body of norms

→ Give agents the capability of throwing exceptions and marking goals not only as

achieved, but also as failed or released

17

Extending JaCaMo for Exception Handling

• The extension mostly concerns the organizational dimension

→ The Moise component

• Changes are as conservative as possible

→ When no recovery strategy is specified, we fall back to standard JaCaMo

• We satisfy three needs

→ Specify recovery strategies within an organization

→ Translate recovery strategies into a corresponding body of norms

→ Give agents the capability of throwing exceptions and marking goals not only as

achieved, but also as failed or released

17

Extending JaCaMo for Exception Handling

• The extension mostly concerns the organizational dimension

→ The Moise component

• Changes are as conservative as possible

→ When no recovery strategy is specified, we fall back to standard JaCaMo

• We satisfy three needs

→ Specify recovery strategies within an organization

→ Translate recovery strategies into a corresponding body of norms

→ Give agents the capability of throwing exceptions and marking goals not only as

achieved, but also as failed or released

17

JaCaMo Metamodel Extended

generate
update

Organization Dimension

Environment Dimension Agent Dimension

Throwing Goal

1 1

1

0..1

11
Catching Goal

1

1

Handling Policy

condition

Notification Policy

condition

Exception Spec

type

0..n

1

11

0..n

Recovery
Strategy

concept mappingObservable
Event

Observable
Property

OperationArtifactWorkspace

sub-group

Internal ActionExternal Action

Action

Triggering Event

Belief

PlanScheme

Mission
(Responsibility)

Goal
(Task) Internal Goal

Agent

Norm

RoleGroup

Organization

18

Exception Handling Infrastructure

Generating norms from recovery strategies

Recovery are strategies reified as norms in JaCaMo’s normative program

New normative facts, such as:

• notificationPolicy(NP,Condition)

• handlingPolicy(HP,Condition)

• policy goal(P,G)

• exceptionArgument(E,ArgFunctor,ArgArity)

• failed(S,G)

• thrown(S,E,Ag,Args)

New rules and norms, like:

e n a b l e d (S ,TG) :−
p o l i c y g o a l (P ,TG) & n o t i f i c a t i o n P o l i c y (P , C o n d i t i o n) & C o n d i t i o n &

g o a l (, TG, Dep , , NP,) & NP \== 0 &

((Dep = dep (or , PCG) & (a n y s a t i s f i e d (S , PCG) | a l l r e l e a s e d (S , PCG))) |
(Dep = dep (and , PCG) & a l l s a t i s f i e d r e l e a s e d (S , PCG))) .

19

Exception Handling Infrastructure

Generating norms from recovery strategies

Recovery are strategies reified as norms in JaCaMo’s normative program

New normative facts, such as:

• notificationPolicy(NP,Condition)

• handlingPolicy(HP,Condition)

• policy goal(P,G)

• exceptionArgument(E,ArgFunctor,ArgArity)

• failed(S,G)

• thrown(S,E,Ag,Args)

New rules and norms, like:

e n a b l e d (S ,TG) :−
p o l i c y g o a l (P ,TG) & n o t i f i c a t i o n P o l i c y (P , C o n d i t i o n) & C o n d i t i o n &

g o a l (, TG, Dep , , NP,) & NP \== 0 &

((Dep = dep (or , PCG) & (a n y s a t i s f i e d (S , PCG) | a l l r e l e a s e d (S , PCG))) |
(Dep = dep (and , PCG) & a l l s a t i s f i e d r e l e a s e d (S , PCG))) .

19

Exception Handling Infrastructure

Generating norms from recovery strategies

Recovery are strategies reified as norms in JaCaMo’s normative program

New normative facts, such as:

• notificationPolicy(NP,Condition)

• handlingPolicy(HP,Condition)

• policy goal(P,G)

• exceptionArgument(E,ArgFunctor,ArgArity)

• failed(S,G)

• thrown(S,E,Ag,Args)

New rules and norms, like:

e n a b l e d (S ,TG) :−
p o l i c y g o a l (P ,TG) & n o t i f i c a t i o n P o l i c y (P , C o n d i t i o n) & C o n d i t i o n &

g o a l (, TG, Dep , , NP,) & NP \== 0 &

((Dep = dep (or , PCG) & (a n y s a t i s f i e d (S , PCG) | a l l r e l e a s e d (S , PCG))) |
(Dep = dep (and , PCG) & a l l s a t i s f i e d r e l e a s e d (S , PCG))) .

19

Exception Handling Infrastructure

Extending the organizational artifacts

Agents commit to missions encompassing standard goals, as well as throwing and catching ones

→ Obligations for throwing goals issued when perturbations occur

→ Obligations for catching goals issued when an exception has been thrown

New operations are made available to the agents:

• goalFailed(G)

• throwException(S,E,Ag,Args)

• goalReleased(G)

Exceptions are made available as artifact’s observable properties

19

Exception Handling Infrastructure

Extending the organizational artifacts

Agents commit to missions encompassing standard goals, as well as throwing and catching ones

→ Obligations for throwing goals issued when perturbations occur

→ Obligations for catching goals issued when an exception has been thrown

New operations are made available to the agents:

• goalFailed(G)

• throwException(S,E,Ag,Args)

• goalReleased(G)

Exceptions are made available as artifact’s observable properties

19

Exception Handling Infrastructure

Extending the organizational artifacts

Agents commit to missions encompassing standard goals, as well as throwing and catching ones

→ Obligations for throwing goals issued when perturbations occur

→ Obligations for catching goals issued when an exception has been thrown

New operations are made available to the agents:

• goalFailed(G)

• throwException(S,E,Ag,Args)

• goalReleased(G)

Exceptions are made available as artifact’s observable properties

19

Agent Programming with Exceptions

+o b l i g a t i o n (Ag , , done (,SOME GOAL, Ag) ,)

: my name (Ag)

<− !SOME GOAL ;

g o a l A c h i e v e d (SOME GOAL) .

+!SOME GOAL

<− // do someth ing to a c h i e v e t h e g o a l

−!SOME GOAL

<− g o a l F a i l e d (SOME GOAL) ;

. f a i l .

+o b l i g a t i o n (Ag , , done (,THROWING GOAL, Ag) ,)

: my name (Ag)

<− throwExcept ion (E , [a rg1 (A1) , . . . , argN (AN)]) ;

g o a l A c h i e v e d (THROWING GOAL) .

Raising agent

+o b l i g a t i o n (Ag , , done (, CATCHING GOAL , Ag) ,)

: my name (Ag) &

exceptionArgument (, E , a rg1 (A1)) & . . . &

exceptionArgument (, E , a rg1 (AN))

<− // do someth ing to h a n d l e t h e e x c e p t i o n

g o a l R e l e a s e d (SOME GOAL) ;

// o r r e s e t G o a l (SOME GOAL) ;

g o a l A c h i e v e d (CATCHING GOAL) .

Handler agent

<r e c o v e r y−s t r a t e g y i d =”...”>

<n o t i f i c a t i o n −p o l i c y i d =”...”>

<c o n d i t i o n t y p e=”goa l−f a i l u r e ”>

<c o n d i t i o n−argument i d =” t a r g e t ” v a l u e=”SOME GOAL” />

</c o n d i t i o n>

<except ion−spec i d =”E”>

<except ion−argument i d =”arg1 ” a r i t y = ” . . . ” />

. . .

<except ion−argument i d =”argN ” a r i t y = ” . . . ” />

</except ion−spec>

<g o a l i d =”THROWING GOAL” />

</n o t i f i c a t i o n −p o l i c y>

<hand l ing−p o l i c y i d =”...”>

<c o n d i t i o n t y p e=”a l w a y s ” />

<g o a l i d =”CATCHING GOAL” />

</hand l ing−p o l i c y>

</r e c o v e r y−s t r a t e g y>

Recovery strategy

20

Exception Handling in Operation

Environment Organizational
Infrastructure

perceive/act

Handler
agent(s)

Raising
agent(s)

Active

Raised

Handled

21

Exception Handling in Operation

Environment Organizational
Infrastructure1. perturbation

perceive/act

Handler
agent(s)

Raising
agent(s)

Active

Raised

Handled

21

Exception Handling in Operation

Environment Organizational
Infrastructure

2. obligation(TG)

1. perturbation

perceive/act

Handler
agent(s)

Raising
agent(s)

Active

Raised

Handled

21

Exception Handling in Operation

Environment Organizational
Infrastructure

2. obligation(TG)

3. throwException(E,Args)

1. perturbation

perceive/act

Handler
agent(s)

Raising
agent(s)

Active

Raised

Handled

21

Exception Handling in Operation

Environment Organizational
Infrastructure

2. obligation(TG)

3. throwException(E,Args)

1. perturbation

perceive/act

4. goalAchieved(TG)
Handler
agent(s)

Raising
agent(s)

Active

Raised

Handled

21

Exception Handling in Operation

Environment Organizational
Infrastructure

2. obligation(TG)

3. throwException(E,Args)

5. obligation(CG)

1. perturbation

perceive/act

4. goalAchieved(TG)
Handler
agent(s)

Raising
agent(s)

Active

Raised

Handled

21

Exception Handling in Operation

Environment Organizational
Infrastructure

2. obligation(TG)

3. throwException(E,Args)

5. obligation(CG)

1. perturbation

perceive/act

4. goalAchieved(TG)

6. goalAchieved(CG)

Handler
agent(s)

Raising
agent(s)

Active

Raised

Handled

21

Example: House Building

• The organizational goal is to build a house on a plot

• Site preparation must be completed before any other step; should a failure occur, the

whole construction could not proceed
house built

site
prepared
[1 week]

floors
laid

[4 days]

walls
built

[2 weeks]

roof
built

[4 days]

windows
fitted
[2 days]

doors
fitted
[2 days]

plumbing
installed

[6 days]

electrical
system
installed

[2 days]

exterior
painted
[1 week]

interior
painted
[4 days]

22

Example: House Building

• The organizational goal is to build a house on a plot

• Site preparation must be completed before any other step; should a failure occur, the

whole construction could not proceed
house built

site
prepared
[1 week]

floors
laid

[4 days]

walls
built

[2 weeks]

roof
built

[4 days]

windows
fitted
[2 days]

doors
fitted
[2 days]

plumbing
installed

[6 days]

electrical
system
installed

[2 days]

exterior
painted
[1 week]

interior
painted
[4 days]

notify site
problem

[1 day]
inspect site

[3 days]

notify
affected

companies

goal-failure

site preparation exception
• errorCode

Notification policy Handling policy

22

Example: House Building

• The organizational goal is to build a house on a plot

• Site preparation must be completed before any other step; should a failure occur, the

whole construction could not proceed
house built

site
prepared
[1 week]

floors
laid

[4 days]

walls
built

[2 weeks]

roof
built

[4 days]

windows
fitted
[2 days]

doors
fitted
[2 days]

plumbing
installed

[6 days]

electrical
system
installed

[2 days]

exterior
painted
[1 week]

interior
painted
[4 days]

notify site
problem

[1 day]
inspect site

[3 days]

notify
affected

companies

goal-failure

site preparation exception
• errorCode

Notification policy Handling policy

site prep contractor

engineer

house owner

22

Example: House Building

• The organizational goal is to build a house on a plot

• Site preparation must be completed before any other step; should a failure occur, the

whole construction could not proceed
house built

site
prepared
[1 week]

floors
laid

[4 days]

walls
built

[2 weeks]

roof
built

[4 days]

windows
fitted
[2 days]

doors
fitted
[2 days]

plumbing
installed

[6 days]

electrical
system
installed

[2 days]

exterior
painted
[1 week]

interior
painted
[4 days]

notify site
problem

[1 day]
inspect site

[3 days]

notify
affected

companies

goal-failure

site preparation exception
• errorCode

Notification policy Handling policy

site prep contractor

engineer

house owner

<recovery-strategy id="rsSitePreparation ">
<notification-policy id="np1">

<condition type="goal-failure">
<condition-argument id="target" value ="site_prepared" />

</condition>
<exception-spec id="site_preparation_exception ">

<exception-argument id="errorCode" arity="1" />
</exception-spec>
<goal id="notify_site_preparation_problem" />

</notification-policy>
<handling-policy id="hp1">

<condition type="always" />
<goal id="handle_site_problem">

<plan operator="parallel">
<goal id="inspect_site" />
<goal id="notify_affected_companies" />

</plan>
</goa >

</handling-policy>
</recovery-strategy>

22

Example: House Building

• The organizational goal is to build a house on a plot

• Site preparation must be completed before any other step; should a failure occur, the

whole construction could not proceed
house built

site
prepared
[1 week]

floors
laid

[4 days]

walls
built

[2 weeks]

roof
built

[4 days]

windows
fitted
[2 days]

doors
fitted
[2 days]

plumbing
installed

[6 days]

electrical
system
installed

[2 days]

exterior
painted
[1 week]

interior
painted
[4 days]

notify site
problem

[1 day]
inspect site

[3 days]

notify
affected

companies

goal-failure

site preparation exception
• errorCode

Notification policy Handling policy

+obligation(Ag,_,done(_,site_prepared,Ag),_)
: .my_name (Ag)

<- !site_prepared;
goalAchieved(site_prepared).

+!site_prepared
<- prepareSite. //simulates the action in the environment

-! site_prepared
<- goalFailed(site_prepared);

.fail.

+obligation(Ag,_,done(_,notify_site_preparation_problem,Ag),_)
: .my_name (Ag) &

// percepts encoding that the site is flooded
<- throwException(site_preparation_exception,[errorCode(flooding)]);

goalAchieved(notify_site_preparation_problem).

site prep contractor agent

22

Example: House Building

• The organizational goal is to build a house on a plot

• Site preparation must be completed before any other step; should a failure occur, the

whole construction could not proceed
house built

site
prepared
[1 week]

floors
laid

[4 days]

walls
built

[2 weeks]

roof
built

[4 days]

windows
fitted
[2 days]

doors
fitted
[2 days]

plumbing
installed

[6 days]

electrical
system
installed

[2 days]

exterior
painted
[1 week]

interior
painted
[4 days]

notify site
problem

[1 day]
inspect site

[3 days]

notify
affected

companies

goal-failure

site preparation exception
• errorCode

Notification policy Handling policy

+obligation(Ag,_,done(_,site_prepared,Ag),_)
: .my_name (Ag)

<- !site_prepared;
goalAchieved(site_prepared).

+!site_prepared
<- prepareSite. //simulates the action in the environment

-! site_prepared
<- goalFailed(site_prepared);

.fail.

+obligation(Ag,_,done(_,notify_site_preparation_problem,Ag),_)
: .my_name (Ag) &

// percepts encoding that the site is flooded
<- throwException(site_preparation_exception,[errorCode(flooding)]);

goalAchieved(notify_site_preparation_problem).

site prep contractor agent

22

Example: House Building

• The organizational goal is to build a house on a plot

• Site preparation must be completed before any other step; should a failure occur, the

whole construction could not proceed
house built

site
prepared
[1 week]

floors
laid

[4 days]

walls
built

[2 weeks]

roof
built

[4 days]

windows
fitted
[2 days]

doors
fitted
[2 days]

plumbing
installed

[6 days]

electrical
system
installed

[2 days]

exterior
painted
[1 week]

interior
painted
[4 days]

notify site
problem

[1 day]
inspect site

[3 days]

notify
affected

companies

goal-failure

site preparation exception
• errorCode

Notification policy Handling policy

+obligation(Ag,_,done(_,site_prepared,Ag),_)
: .my_name (Ag)

<- !site_prepared;
goalAchieved(site_prepared).

+!site_prepared
<- prepareSite. //simulates the action in the environment

-! site_prepared
<- goalFailed(site_prepared);

.fail.

+obligation(Ag,_,done(_,notify_site_preparation_problem,Ag),_)
: .my_name (Ag) &

// percepts encoding that the site is flooded
<- throwException(site_preparation_exception,[errorCode(flooding)]);

goalAchieved(notify_site_preparation_problem).

site prep contractor agent

22

Example: House Building

• The organizational goal is to build a house on a plot

• Site preparation must be completed before any other step; should a failure occur, the

whole construction could not proceed
house built

site
prepared
[1 week]

floors
laid

[4 days]

walls
built

[2 weeks]

roof
built

[4 days]

windows
fitted
[2 days]

doors
fitted
[2 days]

plumbing
installed

[6 days]

electrical
system
installed

[2 days]

exterior
painted
[1 week]

interior
painted
[4 days]

notify site
problem

[1 day]
inspect site

[3 days]

notify
affected

companies

goal-failure

site preparation exception
• errorCode

Notification policy Handling policy

+obligation(Ag,_,done(_,site_prepared,Ag),_)
: .my_name (Ag)

<- !site_prepared;
goalAchieved(site_prepared).

+!site_prepared
<- prepareSite. //simulates the action in the environment

-! site_prepared
<- goalFailed(site_prepared);

.fail.

+obligation(Ag,_,done(_,notify_site_preparation_problem,Ag),_)
: .my_name (Ag) &

// percepts encoding that the site is flooded
<- throwException(site_preparation_exception,[errorCode(flooding)]);

goalAchieved(notify_site_preparation_problem).

site prep contractor agent

22

Example: House Building

• The organizational goal is to build a house on a plot

• Site preparation must be completed before any other step; should a failure occur, the

whole construction could not proceed
house built

site
prepared
[1 week]

floors
laid

[4 days]

walls
built

[2 weeks]

roof
built

[4 days]

windows
fitted
[2 days]

doors
fitted
[2 days]

plumbing
installed

[6 days]

electrical
system
installed

[2 days]

exterior
painted
[1 week]

interior
painted
[4 days]

notify site
problem

[1 day]
inspect site

[3 days]

notify
affected

companies

goal-failure

site preparation exception
• errorCode

Notification policy Handling policy

+obligation(Ag,_,done(_,site_prepared,Ag),_)
: .my_name (Ag)

<- !site_prepared;
goalAchieved(site_prepared).

+!site_prepared
<- prepareSite. //simulates the action in the environment

-! site_prepared
<- goalFailed(site_prepared);

.fail.

+obligation(Ag,_,done(_,notify_site_preparation_problem,Ag),_)
: .my_name (Ag) &

// percepts encoding that the site is flooded
<- throwException(site_preparation_exception,[errorCode(flooding)]);

goalAchieved(notify_site_preparation_problem).

site prep contractor agent

22

Example: House Building

• The organizational goal is to build a house on a plot

• Site preparation must be completed before any other step; should a failure occur, the

whole construction could not proceed
house built

site
prepared
[1 week]

floors
laid

[4 days]

walls
built

[2 weeks]

roof
built

[4 days]

windows
fitted
[2 days]

doors
fitted
[2 days]

plumbing
installed

[6 days]

electrical
system
installed

[2 days]

exterior
painted
[1 week]

interior
painted
[4 days]

notify site
problem

[1 day]
inspect site

[3 days]

notify
affected

companies

goal-failure

site preparation exception
• errorCode

Notification policy Handling policy +obligation(Ag,_,done(_,inspect_site ,Ag),_)
: .my_name(Ag) &

exceptionArgument(_,site_preparation_exception,errorCode(flooding))
<- performSiteAnalysis(Result);

fixFlooding(Result);
goalReleased(site_prepared);
goalAchieved(inspect_site).

+obligation(Ag,_,done(_,inspect_site,Ag),_)
: .my_name(Ag) &
exceptionArgument(_,site_preparation_exception,errorCode(archaeologicalRemains))

<- delimitSite ;
carefullyRemoveRemains;
resetGoal(site_prepared).

engineer agent

22

Example: House Building

• The organizational goal is to build a house on a plot

• Site preparation must be completed before any other step; should a failure occur, the

whole construction could not proceed
house built

site
prepared
[1 week]

floors
laid

[4 days]

walls
built

[2 weeks]

roof
built

[4 days]

windows
fitted
[2 days]

doors
fitted
[2 days]

plumbing
installed

[6 days]

electrical
system
installed

[2 days]

exterior
painted
[1 week]

interior
painted
[4 days]

notify site
problem

[1 day]
inspect site

[3 days]

notify
affected

companies

goal-failure

site preparation exception
• errorCode

Notification policy Handling policy +obligation(Ag,_,done(_,inspect_site ,Ag),_)
: .my_name(Ag) &
exceptionArgument(_,site_preparation_exception,errorCode(flooding))

<- performSiteAnalysis(Result);
fixFlooding(Result);
goalReleased(site_prepared);
goalAchieved(inspect_site).

+obligation(Ag,_,done(_,inspect_site,Ag),_)
: .my_name(Ag) &
exceptionArgument(_,site_preparation_exception,errorCode(archaeologicalRemains))

<- delimitSite ;
carefullyRemoveRemains;
resetGoal(site_prepared).

engineer agent

22

Discussion and Conclusions

Benefits

Five important features of the approach:

Autonomy
preservation

Decentralization
Responsibility
distribution

Reliable
feedback

Platform
integration

We can capture a wide range of situations:

• Goal failures

• Goal delays

• Custom perturbations

• Exceptions raised collectively

• Exceptions handled collectively

• Recurrent exception handling

• Concerted exceptions

• BPMN error events

23

Benefits

Five important features of the approach:

Autonomy
preservation

Decentralization
Responsibility
distribution

Reliable
feedback

Platform
integration

We can capture a wide range of situations:

• Goal failures

• Goal delays

• Custom perturbations

• Exceptions raised collectively

• Exceptions handled collectively

• Recurrent exception handling

• Concerted exceptions

• BPMN error events
23

Exception Handling and Message Passing

Robustness could be achieved by relying on inter-agent messages

But...

→ The agent detecting a perturbation may not know to whom a message must be sent

→ No expectation on agents’ behavior

Responsibilities concerning the handling of perturbations are not clear

→ No uniform approach for agent programming

→ Bad impact in terms of modularity and decoupling

We rely on the normative layer of the organization to encode such responsibilities

→ No significant increase of computational cost when exception handling is in place

24

Exception Handling and Message Passing

Robustness could be achieved by relying on inter-agent messages

But...

→ The agent detecting a perturbation may not know to whom a message must be sent

→ No expectation on agents’ behavior

Responsibilities concerning the handling of perturbations are not clear

→ No uniform approach for agent programming

→ Bad impact in terms of modularity and decoupling

We rely on the normative layer of the organization to encode such responsibilities

→ No significant increase of computational cost when exception handling is in place

24

Exception Handling and Message Passing

Robustness could be achieved by relying on inter-agent messages

But...

→ The agent detecting a perturbation may not know to whom a message must be sent

→ No expectation on agents’ behavior

Responsibilities concerning the handling of perturbations are not clear

→ No uniform approach for agent programming

→ Bad impact in terms of modularity and decoupling

We rely on the normative layer of the organization to encode such responsibilities

→ No significant increase of computational cost when exception handling is in place

24

Exception Handling and Message Passing

Robustness could be achieved by relying on inter-agent messages

But...

→ The agent detecting a perturbation may not know to whom a message must be sent

→ No expectation on agents’ behavior

Responsibilities concerning the handling of perturbations are not clear

→ No uniform approach for agent programming

→ Bad impact in terms of modularity and decoupling

We rely on the normative layer of the organization to encode such responsibilities

→ No significant increase of computational cost when exception handling is in place

24

Exception Handling and Message Passing

Robustness could be achieved by relying on inter-agent messages

But...

→ The agent detecting a perturbation may not know to whom a message must be sent

→ No expectation on agents’ behavior

Responsibilities concerning the handling of perturbations are not clear

→ No uniform approach for agent programming

→ Bad impact in terms of modularity and decoupling

We rely on the normative layer of the organization to encode such responsibilities

→ No significant increase of computational cost when exception handling is in place

24

Modularity through Exception Handling

Exceptions and exception handling are not only needed to deal with errors

Means for enabling robust software composition12

→ Allow the invoker of an operation to extend the operation domain or its range

→ Increase in generality: the “fixup” will depend on the exception receiver’s objective

MAS bring software modularity and separation of concerns to an extreme

12John B. Goodenough. “Exception Handling: Issues and a Proposed Notation”. In: Communications of the ACM 18.12 (1975), pp. 683–696.

25

Modularity through Exception Handling

Exceptions and exception handling are not only needed to deal with errors

Means for enabling robust software composition12

→ Allow the invoker of an operation to extend the operation domain or its range

→ Increase in generality: the “fixup” will depend on the exception receiver’s objective

MAS bring software modularity and separation of concerns to an extreme

12John B. Goodenough. “Exception Handling: Issues and a Proposed Notation”. In: Communications of the ACM 18.12 (1975), pp. 683–696.

25

Modularity through Exception Handling

Exceptions and exception handling are not only needed to deal with errors

Means for enabling robust software composition12

→ Allow the invoker of an operation to extend the operation domain or its range

→ Increase in generality: the “fixup” will depend on the exception receiver’s objective

MAS bring software modularity and separation of concerns to an extreme

12John B. Goodenough. “Exception Handling: Issues and a Proposed Notation”. In: Communications of the ACM 18.12 (1975), pp. 683–696.

25

Exception Handling as Accountability

Exception handling can be effectively conceived, more generally, in terms of accountability

relationships among agents

Accountability (Cambridge Dictionary)

The fact of being responsible for what you do and able to give a satisfactory reason for it, or

the degree to which this happens

Channels through which relevant local information (accounts) flow from informed sources (a-

givers) to the agents competent to understand the answer (a-takers)

Accountability supports robustness when the account about a perturbation is reported to the

agent who is responsible for treating that perturbation

26

Exception Handling as Accountability

Exception handling can be effectively conceived, more generally, in terms of accountability

relationships among agents

Accountability (Cambridge Dictionary)

The fact of being responsible for what you do and able to give a satisfactory reason for it, or

the degree to which this happens

Channels through which relevant local information (accounts) flow from informed sources (a-

givers) to the agents competent to understand the answer (a-takers)

Accountability supports robustness when the account about a perturbation is reported to the

agent who is responsible for treating that perturbation

26

Exception Handling as Accountability

Exception handling can be effectively conceived, more generally, in terms of accountability

relationships among agents

Accountability (Cambridge Dictionary)

The fact of being responsible for what you do and able to give a satisfactory reason for it, or

the degree to which this happens

Channels through which relevant local information (accounts) flow from informed sources (a-

givers) to the agents competent to understand the answer (a-takers)

Accountability supports robustness when the account about a perturbation is reported to the

agent who is responsible for treating that perturbation

26

Exception Handling as Accountability

Exception handling can be effectively conceived, more generally, in terms of accountability

relationships among agents

Accountability (Cambridge Dictionary)

The fact of being responsible for what you do and able to give a satisfactory reason for it, or

the degree to which this happens

Channels through which relevant local information (accounts) flow from informed sources (a-

givers) to the agents competent to understand the answer (a-takers)

Accountability supports robustness when the account about a perturbation is reported to the

agent who is responsible for treating that perturbation

26

Future Directions

1. Unexpected (or unanticipated) exceptions → Self-Adaptive Systems

2. Robustness through accountability → Many system properties can be seen as kinds of

robustness

• Reliability

• Efficency

• Scalability

• Modularity

• Evolvability

Accountability as a framework to exchange reliable feedback among distributed components

in a structured way

→ Support for a wide range of non-functional requirements

27

Future Directions

1. Unexpected (or unanticipated) exceptions → Self-Adaptive Systems

2. Robustness through accountability → Many system properties can be seen as kinds of

robustness

• Reliability

• Efficency

• Scalability

• Modularity

• Evolvability

Accountability as a framework to exchange reliable feedback among distributed components

in a structured way

→ Support for a wide range of non-functional requirements

27

Future Directions

1. Unexpected (or unanticipated) exceptions → Self-Adaptive Systems

2. Robustness through accountability → Many system properties can be seen as kinds of

robustness

• Reliability

• Efficency

• Scalability

• Modularity

• Evolvability

Accountability as a framework to exchange reliable feedback among distributed components

in a structured way

→ Support for a wide range of non-functional requirements

27

Thank you for your attention!

Questions?

27

ATM Example

Money withdrawal at an ATM involves two steps:

1. The desired amount is collected from the user by a user agent as a string

2. The string is parsed by a parser and the amount is given back to the user agent to

provide the money

user

agent

“100”

100

parser

28

ATM Example

If the string is not a number in digits parsing fails

user

agent

“one hundred”

parser

The parser agent has only a partial view

→ Unaware of the data source and of the aims for which the parsing is requested

Only the user agent has the necessary contextual information

→ A new input must be requested to the user

28

ATM Example in BPMN

ATM

Withdraw

Provide Money

Obtain Amount

Get Amount As
String Parse Amount

Attempts

Not A Number

Count Attempts

Amount Unavailable

Retry Later

<= 3

> 3

29

Accountability in the Human World

Accountability frameworks describe organization-wide processes for monitoring, analysing, and

improving performance in all aspects of an organization13

Address recurring and systemic issues to incorporate lessons learned into future activities

A general schema for accountability frameworks

13Executive Board of the United Nations Development Programme and of the United Nations Population Fund. The UNDP accountability system, Accountability framework and

oversight policy. Tech. rep. DP/2008/16/Rev.1. United Nations, 2008.

30

Self-Adaptive Systems

Self-adaptive software aims at

autonomously evaluating and

changing its behavior

whenever an evaluation shows that

the system is not accomplishing what

it was intended to do14

Most approaches follow the

MAPE-K loop15

Autonomic Manager

Managed Element

Sensors Actuators

Monitor

Analyze

Execute

Plan

Knowledge

14Frank D. Maćıas-Escrivá et al. “Self-adaptive systems: A survey of current approaches, research challenges and applications”. In: Expert Systems with Applications 40.18 (2013),

pp. 7267–7279.

15IBM. An Architectural Blueprint for Autonomic Computing. Tech. rep. IBM, 2005.

31

The Guardian Model

Guardian

Agent 1 Agent 2 Agent N…

Multi-Agent Application Environment

notify(e)

command

query-status

32

Organizational Artifacts in JaCaMo

33

State transitions for obligations in JaCaMo

Active

Fulfilled

Unfulfilled

Inactive

ϕ

¬ϕ

g

d > now

34

Extended Lifecycle of a JaCaMo Goal

preconditions

goalReleased

Waiting goalAchieved (1...n)

resetGoal

goalFailed

goalReleased

Enabled

resetGoal

Satisfied

resetGoal

Failed

resetGoal

Released

35

Condition Types for Recovery Strategies

Type Arguments Condition formula

always [] true

goal-failure [target] scheme id(S) & failed(S,$target)

goal-ttf-expiration [target] scheme id(S) & unfulfilled(obligation(, ,done(S,$target,),))

custom [formula] $formula

36

Accountability Model

Agent LevelOrganizational Level

concept mapping

1
1

Requesting Task

1

1

Account Spec

must-account-with

1 1

1

1Accountability Agreement

can-request-when

0..1

1

0..n

1

0..n

Recovery
Strategy

1 1 Treatment Task

take on/leave

Treatment Policy

condition

achieve/fail

create/delete

adopt/leave

sub-task

Responsibility

Accounting Task

Task

Internal Goal

Agent

sub-group

Norm

RoleGroup

Organization

37

Boissier, Olivier et al. Multi-agent oriented programming: programming multi-agent systems

using JaCaMo. MIT Press, 2020.

Bordini, Rafael H., Jomi F. Hübner, and Michael Wooldridge. Programming multi-agent

systems in AgentSpeak using Jason. John Wiley & Sons, 2007.

Executive Board of the United Nations Development Programme and of the United Nations

Population Fund. The UNDP accountability system, Accountability framework and oversight

policy. Tech. rep. DP/2008/16/Rev.1. United Nations, 2008.

Goodenough, John B. “Exception Handling: Issues and a Proposed Notation”. In: Commu-

nications of the ACM 18.12 (1975), pp. 683–696.

Hägg, Staffan. “A sentinel approach to fault handling in multi-agent systems”. In: Multi-

Agent Systems Methodologies and Applications. Springer, 1997, pp. 181–195.

Hübner, Jomi F., Jaime S. Sichman, and Olivier Boissier. “Developing Organised Multiagent

Systems Using the MOISE+ Model: Programming Issues at the System and Agent Levels”.

In: International Journal of Agent-Oriented Software Engineering 1.3/4 (2007), pp. 370–395.

IBM. An Architectural Blueprint for Autonomic Computing. Tech. rep. IBM, 2005.

“ISO/IEC/IEEE International Standard - Systems and software engineering – Vocabulary”.

In: ISO/IEC/IEEE 24765:2010(E) (2010), pp. 1–418.

Maćıas-Escrivá, Frank D. et al. “Self-adaptive systems: A survey of current approaches,

research challenges and applications”. In: Expert Systems with Applications 40.18 (2013),

pp. 7267–7279.

Platon, Eric, Nicolas Sabouret, and Shinichi Honiden. “An architecture for exception man-

agement in multiagent systems”. In: IJAOSE 2.3 (2008), pp. 267–289.

Ricci, Alessandro et al. “Environment Programming in CArtAgO”. In: Multi-Agent Program-

ming: Languages, Tools and Applications. Springer, 2009, pp. 259–288.

Tripathi, Anand and Robert Miller. “Exception Handling in Agent-Oriented Systems”. In:

Advances in Exception Handling Techniques. Springer, 2001, pp. 128–146.

Weske, Mathias. Business Process Management: Concepts, Languages, Architectures. Springer,

2007.

White, Stephen A. “Introduction to BPMN”. In: IBM Cooperation 2.0 (2004).

	Introduction
	Background
	A Proposal for Exception Handling in Multi-Agent Systems
	Exception Handling in JaCaMo
	Discussion and Conclusions

