
Università degli Studi di Torino
Computer Science Department

Ph.D. Program in Computer Science

Cycle XXXIII

Doctoral Thesis

Exception Handling for Robust

Multi-Agent Systems

Stefano Tedeschi

Supervisor Prof. Matteo Baldoni

Ph.D. Program Coordinator Prof. Marco Grangetto

Revised version
October 15th, 2021

INF/01 - Computer Sciences

Stefano Tedeschi

Exception Handling for Robust Multi-Agent Systems

Supervisor: Prof. Matteo Baldoni

Ph.D. Program Coordinator: Prof. Marco Grangetto

Università degli Studi di Torino

Computer Science Department

Ph.D. Program in Computer Science

Cycle XXXIII

Corso Svizzera 185

10149 Torino, Italy

Abstract

Robustness is an important property of software systems, and the availability of

proper feedback is seen as crucial to obtain it, especially in the case of systems of dis-

tributed and interconnected components. Exception handling has been successfully

proposed in the past years as a powerful yet simple software engineering technology

to address robustness in programming languages.

Multi-agent Systems (MAS), in turn, offer powerful abstractions for conceptualizing

and implementing distributed systems, but the current design methodologies for

MAS fall short in addressing robustness in a systematic way at design time. Thus,

exception handling is usually approached by ad hoc solutions, that hamper code

modularity and decoupling.

In this thesis we outline a vision of how robustness in MAS can be granted as a

design property. We present a general model for multi-agent organizations that

explicitly encompasses the notion of exception as a first-class element in the design

of an organization. Relying on such a model, we propose an exception handling

mechanism that is seamlessly integrated with organizational concepts, such as

responsibilities, goals and norms.

The proposal is grounded on the notion of responsibility. In an organization, be-

sides responsibilities for organizational tasks, we propose to specify also tasks and

responsibilities for managing exceptions, that is, for providing feedback about the

context in which exceptions occur, and for handling it. Agents will take on these

responsibilities as soon as they take part in the organization.

We exemplify our vision on the JaCaMo multi-agent platform, by showing how

its conceptual model and infrastructure can be extended so as to encompass the

proposed exception handling mechanism.

iii

Ai nonni.

Acknowledgements

The writing of this thesis has been sometimes quite hard and the results presented
here would have never been possible without the support of many people.

First of all, I am heartedly thankful to Prof. Matteo Baldoni to whom I want to
express my sincere gratitude and admiration. He not only constantly and rigorously
guided me along my scientific path, but with his patience, friendly advices and
passion, he truly transmitted to me the enthusiasm for doing research.

I owe a great debt to Prof. Cristina Baroglio and Dr. Roberto Micalizio, as well. The
stimulating discussions we had throughout these years and their continuous help
have been source of great inspiration and made me learn a lot.

I warmly thank the reviewers, Prof. Stefania Costantini (University of L’Aquila, Italy),
Prof. Jomi F. Hübner (Federal University of Santa Catarina, Brazil) and Dr. Luca
Sabatucci (ICAR CNR, Italy) for their time, suggestions and precious feedback.

The final part of of this research project has been carried out thanks to the grant
“Bando Talenti della Società Civile” promoted by Fondazione CRT with Fondazione
Giovanni Goria, which deserve an important acknowledgment.

I am grateful to Prof. Olivier Boissier, for having shared with me, through many
inspiring and fruitful discussions, his deep knowledge about multi-agent systems
and organizations.

I would like to thank all the colleagues – and friends – who contributed to making
the time spent at the department so pleasant, in particular: Noemi, Francesco,
Gianluca, Simone, Alessandra, Komal, and Livio.

A personal thank goes to my family – my mom, my dad, Arianna and my grandparents
– who always and unconditionally supported and keep supporting me in whatever I
attempt to pursue.

Finally, but importantly, a sweet acknowledgement to Milena, who has been con-
stantly with me throughout this intense journey. She always encouraged me in the
difficult moments and shared with me the joy of the happy ones, with love.

Thank you.

Torino, October 2021

Stefano

vii

Publications

The candidate contributed to the following publications.

2021

Baldoni, M., Baroglio, C., Boissier, O., Micalizio, R., and Tedeschi, S. (2021a). “Demon-
strating Exception Handling in JaCaMo”. In: Advances in Practical Applications of Agents,
Multi-Agent Systems, and Social Good. The PAAMS Collection - 19th International Conference,
PAAMS 2021, Salamanca, Spain, October 6–8, 2021, Proceedings. Ed. by F. Dignum, J. M.
Corchado, and F. De La Prieta. Vol. 12946. Lecture Notes in Computer Science. Springer,
pp. 341–345. URL: https://doi.org/10.1007/978-3-030-85739-4_28.

Baldoni, M., Baroglio, C., Boissier, O., Micalizio, R., and Tedeschi, S. (2021b). “Distributing
Responsibilities for Exception Handling in JaCaMo”. In: Proceedings of the 20th Inter-
national Conference on Autonomous Agents and MultiAgent Systems. AAMAS ’21. Virtual
Event, United Kingdom: International Foundation for Autonomous Agents and Multiagent
Systems, pp. 1752–1754. URL: http://www.ifaamas.org/Proceedings/aamas2021/
pdfs/p1752.pdf.

Baldoni, M., Baroglio, C., Boissier, O., Micalizio, R., and Tedeschi, S. (2021c). “Exception
Handling in Multiagent Organizations: Playing with JaCaMo”. In: Pre-Proceedings of
the 9th International Workshop on Engineering Multi-Agent Systems, EMAS 2021, held in
conjuction with AAMAS 2021.

Baldoni, M., Baroglio, C., Micalizio, R., and Tedeschi, S. (2021d). “Reimagining Robust
Distributed Systems through Accountable MAS”. In: IEEE Internet Computing. To appear.

Baldoni, M., Baroglio, C., Micalizio, R., and Tedeschi, S. (2021e). “Robustness Based on Ac-
countability in Multiagent Organizations”. In: Proceedings of the 20th International Confer-
ence on Autonomous Agents and MultiAgent Systems. AAMAS ’21. Virtual Event, United King-
dom: International Foundation for Autonomous Agents and Multiagent Systems, pp. 142–
150. URL: http://www.ifaamas.org/Proceedings/aamas2021/pdfs/p142.pdf.

Baldoni, M., Baroglio, C., Micalizio, R., and Tedeschi, S. (2021f). “Social Commitments
for Engineering Interaction in Distributed Systems”. In: Artificial Intelligence Methods for
Software Engineering. Ed. by M. Kalech, R. Abreu, and M. Last. World Scientific. Chap. 3,
pp. 51–85. URL: https://doi.org/10.1142/9789811239922_0003.

ix

https://doi.org/10.1007/978-3-030-85739-4_28
http://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1752.pdf
http://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1752.pdf
http://www.ifaamas.org/Proceedings/aamas2021/pdfs/p142.pdf
https://doi.org/10.1142/9789811239922_0003

2020

Baldoni, M., Baroglio, C., Boissier, O., Micalizio, R., and Tedeschi, S. (2020a). “Accountability
and Responsibility in Multiagent Organizations for Engineering Business Processes”. In:
Engineering Multi-Agent Systems, 7th International Workshop, EMAS 2019, Montreal, QC,
Canada, May 13–14, 2019, Revised Selected Papers. Ed. by L. A. Dennis, R. H. Bordini, and
Y. Lespérance. Vol. 12058. Lecture Notes in Computer Science. Springer, pp. 3–24. URL:
https://doi.org/10.1007/978-3-030-51417-4_1.

Baldoni, M., Baroglio, C., Micalizio, R., and Tedeschi, S. (2020b). “Is Explanation the
Real Key Factor for Innovation?” In: Proceedings of the Italian Workshop on Explainable
Artificial Intelligence co-located with 19th International Conference of the Italian Association
for Artificial Intelligence, XAI.it@AIxIA 2020, Online Event, November 25-26, 2020. Ed.
by C. Musto, D. Magazzeni, S. Ruggieri, and G. Semeraro. Vol. 2742. CEUR Workshop
Proceedings. CEUR-WS.org, pp. 87–95. URL: http://ceur-ws.org/Vol-2742/short2.
pdf.

Baldoni, M., Baroglio, C., Micalizio, R., and Tedeschi, S. (2020c). “JADE/JaCaMo+2COMM:
Programming Agent Interactions”. In: Advances in Practical Applications of Agents, Multi-
Agent Systems, and Trustworthiness. The PAAMS Collection - 18th International Conference,
PAAMS 2020, L’Aquila, Italy, October 7-9, 2020, Proceedings. Ed. by Y. Demazeau, T.
Holvoet, J. M. Corchado, and S. Costantini. Vol. 12092. Lecture Notes in Computer
Science. Springer, pp. 388–391. URL: https://doi.org/10.1007/978-3-030-49778-
1_33.

Tedeschi, S. (2020). “Engineering Multiagent Organizations Through Accountability”. In:
Ambient Intelligence – Software and Applications. 11th International Symposium on Ambient
Intelligence. Ed. by P. Novais, G. Vercelli, J. L. Larriba-Pey, F. Herrera, and P. Chamoso.
Vol. 1239. Advances in Intelligent Systems and Computing. Springer, pp. 305–308. URL:
https://doi.org/10.1007/978-3-030-58356-9_36.

2019

Baldoni, M., Baroglio, C., Boissier, O., Micalizio, R., and Tedeschi, S. (2019a). “Accountability
and Agents for Engineering Business Processes”. In: Pre-proceedings of the 7th International
Workshop on Engineering Multi-Agent Systems (EMAS 2019) held in conjuction with AAMAS
2019, Montreal, Canada, May 13-14, 2019. Ed. by R. H. Bordini, L. A. Dennis, and Y.
Lesperance. Best Paper Award. URL: https://cgi.csc.liv.ac.uk/~lad/emas2019/
accepted/EMAS2019_paper_26.pdf.

Baldoni, M., Baroglio, C., Boissier, O., Micalizio, R., and Tedeschi, S. (2019b). “Engineering
Business Processes through Accountability and Agents”. In: Proceedings of the 18th Inter-
national Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’19, Montreal,
QC, Canada, May 13-17, 2019. Ed. by E. Elkind, M. Veloso, N. Agmon, and M. E. Taylor.
International Foundation for Autonomous Agents and Multiagent Systems, pp. 1796–1798.
URL: http://dl.acm.org/citation.cfm?id=3331922.

x

https://doi.org/10.1007/978-3-030-51417-4_1
http://ceur-ws.org/Vol-2742/short2.pdf
http://ceur-ws.org/Vol-2742/short2.pdf
https://doi.org/10.1007/978-3-030-49778-1_33
https://doi.org/10.1007/978-3-030-49778-1_33
https://doi.org/10.1007/978-3-030-58356-9_36
https://cgi.csc.liv.ac.uk/~lad/emas2019/accepted/EMAS2019_paper_26.pdf
https://cgi.csc.liv.ac.uk/~lad/emas2019/accepted/EMAS2019_paper_26.pdf
http://dl.acm.org/citation.cfm?id=3331922

Baldoni, M., Baroglio, C., Boissier, O., Micalizio, R., and Tedeschi, S. (2019c). “Engineer-
ing Multiagent Organizations by Accountability and Responsibility”. In: Discussion and
Doctoral Consortium papers of AI*IA 2019 - 18th International Conference of the Italian
Association for Artificial Intelligence, Rende, Italy, November 19-22, 2019. Ed. by M. Al-
viano, G. Greco, M. Maratea, and F. Scarcello. Vol. 2495. CEUR Workshop Proceedings.
CEUR-WS.org, pp. 12–23. URL: http://ceur-ws.org/Vol-2495/paper2.pdf.

Baldoni, M., Baroglio, C., May, K. M., Micalizio, R., and Tedeschi, S. (2019d). “MOCA: An
ORM model for computational accountability”. In: Intelligenza Artificiale 13.1, pp. 5–20.
URL: https://doi.org/10.3233/IA-180014.

Baldoni, M., Baroglio, C., Micalizio, R., and Tedeschi, S. (2019e). “Implementing Business
Processes in JaCaMo+ by Exploiting Accountability and Responsibility”. In: Proceedings of
the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS
’19, Montreal, QC, Canada, May 13-17, 2019. Ed. by E. Elkind, M. Veloso, N. Agmon, and
M. E. Taylor. International Foundation for Autonomous Agents and Multiagent Systems,
pp. 2330–2332. URL: http://dl.acm.org/citation.cfm?id=3332102.

Baldoni, M., Baroglio, C., Micalizio, R., and Tedeschi, S. (2019f). “Programming Agents by
Their Social Relationships: A Commitment-Based Approach”. In: Algorithms 12.4, p. 76.
URL: https://www.mdpi.com/1999-4893/12/4/76.

2018

Baldoni, M., Baroglio, C., Boissier, O., May, K. M., Micalizio, R., and Tedeschi, S. (2018a).
“Accountability and Responsibility in Agents Organizations”. In: PRIMA 2018: Principles
and Practice of Multi-Agent Systems - 21st International Conference, Tokyo, Japan, October
29 - November 2, 2018, Proceedings. Ed. by T. Miller, N. Oren, Y. Sakurai, I. Noda, B. T. R.
Savarimuthu, and T. C. Son. Lecture Notes in Computer Science 11224. Springer, pp. 403–
419. URL: http://dx.doi.org/10.1007/978-3-030-03098-8_16.

Baldoni, M., Baroglio, C., May, K. M., Micalizio, R., and Tedeschi, S. (2018b). “An Infor-
mation Model for Computing Accountabilities”. In: AI*IA 2018 - Advances in Artificial
Intelligence - XVIIth International Conference of the Italian Association for Artificial Intel-
ligence, Trento, Italy, November 20-23, 2018, Proceedings. Ed. by C. Ghidini, B. Magnini,
A. Passerini, and P. Traverso. Vol. 11298. Lecture Notes in Computer Science. Springer,
pp. 30–44. URL: https://doi.org/10.1007/978-3-030-03840-3_3.

Baldoni, M., Baroglio, C., May, K. M., Micalizio, R., and Tedeschi, S. (2018c). “Computational
Accountability in MAS Organizations with ADOPT”. In: Applied Sciences 8.4. URL: http:
//www.mdpi.com/2076-3417/8/4/489.

Baldoni, M., Baroglio, C., Micalizio, R., and Tedeschi, S. (2018d). “Accountability and
Responsibility in Business Processes via Agent Technology”. In: Proceedings of the Workshop
on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
co-located with the Federated Logic Conference, RCRA@FLOC 2018, Oxford, United Kingdom,
July 13, 2018. Ed. by M. Maratea and M. Vallati. Vol. 2271. Invited paper. CEUR Workshop
Proceedings. URL: http://ceur-ws.org/Vol-2271/invited1.pdf.

xi

http://ceur-ws.org/Vol-2495/paper2.pdf
https://doi.org/10.3233/IA-180014
http://dl.acm.org/citation.cfm?id=3332102
https://www.mdpi.com/1999-4893/12/4/76
http://dx.doi.org/10.1007/978-3-030-03098-8_16
https://doi.org/10.1007/978-3-030-03840-3_3
http://www.mdpi.com/2076-3417/8/4/489
http://www.mdpi.com/2076-3417/8/4/489
http://ceur-ws.org/Vol-2271/invited1.pdf

Dignum, V., Baldoni, M., Baroglio, C., Caon, M., Chatila, R., Dennis, L. A., Génova, G., Haim,
G., Kließ, M. S., López-Sánchez, M., Micalizio, R., Pavón, J., Slavkovik, M., Smakman,
M., Steenbergen, M. van, Tedeschi, S., Torre, L. van der, Villata, S., and Wildt, T. de
(2018). “Ethics by Design: Necessity or Curse?” In: Proceedings of the 2018 AAAI/ACM
Conference on AI, Ethics, and Society, AIES 2018, New Orleans, LA, USA, February 02-03,
2018. Ed. by J. Furman, G. E. Marchant, H. Price, and F. Rossi. ACM, pp. 60–66. URL:
https://doi.org/10.1145/3278721.3278745.

Tedeschi, S. (2018a). “Accountable Agents and Where to Find Them”. In: Proceedings of the
2018 AAAI/ACM Conference on AI, Ethics, and Society, AIES 2018, New Orleans, LA, USA,
February 02-03, 2018. Ed. by J. Furman, G. E. Marchant, H. Price, and F. Rossi. ACM,
pp. 384–385. URL: https://doi.org/10.1145/3278721.3278783.

Tedeschi, S. (2018b). “Computational Accountability and Responsibility in the MAS Domain”.
In: Proceedings of the AI*IA Doctoral Consortium (DC) co-located with the 17th Conference
of the Italian Association for Artificial Intelligence (AI*IA 2018), Trento, Italy, November
20-23, 2018. Ed. by M. Rospocher, L. Serafini, and S. Tonelli. Vol. 2249. Honourable
Mention. CEUR Workshop Proceedings. URL: http://ceur-ws.org/Vol-2249/AIIA-
DC2018_paper_5.pdf.

2017

Baldoni, M., Baroglio, C., May, K. M., Micalizio, R., and Tedeschi, S. (2017a). “ADOPT
JaCaMo: Account-ability-Driven Organization Programming Technique for JaCaMo”. In:
PRIMA 2017: Principles and Practice of Multi-Agent Systems - 20th International Conference,
Nice, France, October 30 - November 3, 2017, Proceedings. Ed. by B. An, A. L. C. Bazzan, J.
Leite, S. Villata, and L. W. N. van der Torre. Vol. 10621. Lecture Notes in Computer Science.
Springer, pp. 295–312. URL: https://doi.org/10.1007/978-3-319-69131-2_18.

Baldoni, M., Baroglio, C., May, K. M., Micalizio, R., and Tedeschi, S. (2017b). “Supporting
Organizational Accountability Inside Multiagent Systems”. In: AI*IA 2017 Advances in
Artificial Intelligence - XVIth International Conference of the Italian Association for Artificial
Intelligence, Bari, Italy, November 14-17, 2017, Proceedings. Ed. by F. Esposito, R. Basili,
S. Ferilli, and F. A. Lisi. Vol. 10640. Lecture Notes in Computer Science. Springer, pp. 403–
417. URL: https://doi.org/10.1007/978-3-319-70169-1_30.

2016

Baldoni, M., Baroglio, C., May, K. M., Micalizio, R., and Tedeschi, S. (2016). “Compu-
tational Accountability”. In: Proceedings of the AI*IA Workshop on Deep Understanding
and Reasoning: A Challenge for Next-generation Intelligent Agents 2016 co-located with
15th International Conference of the Italian Association for Artificial Intelligence (AIxIA
2016), Genova, Italy, November 28th, 2016. Ed. by F. Chesani, P. Mello, and M. Milano.
Vol. 1802. CEUR Workshop Proceedings, pp. 56–62. URL: http://ceur-ws.org/Vol-
1802/paper8.pdf.

xii

https://doi.org/10.1145/3278721.3278745
https://doi.org/10.1145/3278721.3278783
http://ceur-ws.org/Vol-2249/AIIA-DC2018_paper_5.pdf
http://ceur-ws.org/Vol-2249/AIIA-DC2018_paper_5.pdf
https://doi.org/10.1007/978-3-319-69131-2_18
https://doi.org/10.1007/978-3-319-70169-1_30
http://ceur-ws.org/Vol-1802/paper8.pdf
http://ceur-ws.org/Vol-1802/paper8.pdf

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Research Objective . 5

1.3 Thesis Outline . 9

2 Exception Handling 11

2.1 Robustness through Exception Handling 11

2.2 Exception Handling in Programming Languages 14

2.2.1 Continuations . 19

2.3 Exception Handling in Distributed Systems 20

2.3.1 The Actor Model and the Akka Framework 20

2.3.2 Supervision in Akka . 22

2.3.3 Coordinated Atomic Actions 26

2.4 Exception Handling in Business Process Management 27

2.4.1 BPMN Basics . 29

2.4.2 Error Events . 30

2.4.3 Event Subprocesses . 31

2.5 Exception Handling in Self-Adaptive Systems 32

3 Exception Handling in Multi-Agent Systems Literature 35

3.1 Background on Multi-Agent Systems 36

3.1.1 BDI Agents . 37

3.2 The Guardian . 38

3.3 Sentinels . 40

3.3.1 Sentinel-like Agents . 41

3.3.2 Sentinels in Agent-based Grid Computing 42

xiii

3.4 SaGE in MaDKit . 43

3.5 An Agent Execution Model Encompassing Exceptions 44

3.6 Exceptions and Commitment-based Protocols 46

3.7 An Obligation-based Approach . 47

3.8 Failure Handling in SARL . 48

3.9 Fault Tolerance in Jason . 49

3.9.1 Contingency Plans . 50

3.9.2 Monitoring and Supervision in eJason 51

4 A Proposal for Exception Handling in Multi-Agent Systems 53

4.1 Challenges and Open Issues . 54

4.2 Exception Handling as Responsibility 56

4.3 Multi-Agent Organizations . 57

4.3.1 Tasks, Responsibilities and Roles in MAOs 58

4.3.2 Normative Organizations . 59

4.4 Introducing Exceptions . 61

4.4.1 Recovery Strategies . 63

4.4.2 Notification Policies and Throwing Tasks 63

4.4.3 Exception Spec . 64

4.4.4 Handling Policies and Catching Tasks 65

4.5 Exception Handling in Operation . 66

4.5.1 Exceptions Raised Collectively 68

4.5.2 Exceptions Handled Collectively 68

4.5.3 Recurrent Exception Handling 69

5 Case Study: the JaCaMo Framework 71

5.1 JaCaMo Basics . 72

5.1.1 Jason, CArtAgO andMoise 72

5.1.2 Organizational Specification 74

5.1.3 Organization Management Infrastructure 76

5.1.4 Normative Programming . 78

5.2 Adding Exceptions . 80

5.2.1 Using Exceptions in the Organizational Specification 82

xiv

5.2.2 Using Exceptions in Jason Agent Programming 84

5.3 Implementation . 89

5.3.1 Extending the Specification’s XML Schema 89

5.3.2 Extending the Normative Program 92

5.3.3 Extending the Organizational Artifacts 99

6 Experimentation and Evaluation 101

6.1 Feature Overview: a Robust House Building 103

6.1.1 Handling Goal Failure Exceptions 104

6.1.2 Handling Goal Delay Exceptions 108

6.1.3 Exception Handling vs Message Passing 110

6.2 Leveraging Feedback: Bakery . 112

6.2.1 Support for Collective Exception Handling 115

6.2.2 Support for Concerted Exception Handling 118

6.3 Comparing Exception Handling in JaCaMo and BPMN 120

6.3.1 Translating BPMN Processes into JaCaMo Organizations . . . 121

6.3.2 Error Events as Recovery Strategies: Incident Management . . 122

6.3.3 Modeling Recurrent Exception Handling: Order Fulfillment . 130

6.3.4 Capturing Other Kinds of Events 132

6.4 Exception Handling in an Industrial Scenario: Production Cell 133

6.4.1 Shortage of resources . 135

6.4.2 Motor Break . 137

6.4.3 Risk for Human Being . 138

6.5 Adapting to Adverse Conditions: Parcel Delivery 139

6.6 Summary and Comparison with Previous Approaches 141

7 Discussion and Future Directions 149

7.1 Exception Handling and Accountability 150

7.1.1 Accountability in the Human World 150

7.1.2 Conceiving Exception Handling as Accountability 153

7.2 Conclusion and Future Directions . 158

References 161

xv

Introduction 1
Contents

1.1 Motivation . 3

1.2 Research Objective . 5

1.3 Thesis Outline . 9

In the past years, software has acquired more and more a primary role in our daily

lives. At the same time, software systems have become complex entities, where

continuous interaction between a multitude of interconnected and heterogeneous

components takes place in dynamic and distributed environments. Under this

perspective, robustness is a fundamental requirement of such systems. A software

is robust when it is able to keep an acceptable behavior in presence of abnormal

execution conditions, like unavailability of system resources, communication failures,

invalid or stressful inputs (Fernandez et al., 2005). The availability of proper feedback

concerning the execution is seen as crucial to obtain it (Alderson and Doyle, 2010),

especially in the case of systems of distributed and interconnected components.

The problem of building robust software has implications on software engineering

in general, and becomes more relevant due to the fact that we are witnessing an

increasing spreading of “intelligent and autonomous” software in many aspects of

our everyday life. Indeed, we already entrust software, sometimes even without

noticing, with critical decisions in several scenarios. Modern planes, for instance, are

equipped with (software) autopilots that not only help pilots in keeping the route,

but even override the human pilots when their decisions might endanger the safety

of the aircraft. It is therefore evident that, when intelligent software has the power

to take decisions autonomously, we have a serious problem of making such software

robust, that is, under given abnormal conditions it is able to determine what went

wrong and take appropriate countermeasures.

1

One specific mechanism that supports robustness is exception handling (Goodenough,

1975a; Cristian, 1985; Buhr and Mok, 2000) which, roughly speaking, amounts

to equipping the system with the capabilities needed to tackle classes of abnormal

situations, identified at design time. An exception is typically conceived as an

event that causes the suspension of the normal program execution, breaking the

execution flow. Therefore, the purpose of an exception handling mechanism is to

provide the tools to identify when an exception occurs and to apply suitable handlers,

capable of treating the exception and recover. Programming languages research was

among the first to address explicitly the concern of exception handling, with the

aim of allowing programmers to build more reliable software. The main purpose

of an exception handling system was to have systematic treatment of exceptional

conditions at the language level to either recover an appropriate program state

and resume the execution, or to terminate it ‘gracefully’, preventing the program

from crashing. Throughout the years, exception handling proved to be effective in

addressing robustness while also promoting software modularity and low coupling,

and nowadays it is supported by most modern programming languages.

Studies in the field of Multi-Agent Systems (MAS) (Wooldridge, 2009), in turn,

showed the effectiveness of an agent-oriented approach in modeling and imple-

menting this kind of distributed, heterogeneous, and autonomous systems. The

context gave rise to the development of many different programming paradigms and

frameworks, such as, just to mention a few of them, JADE (Bellifemine et al., 1999),

Jason (Bordini et al., 2007), and SARL (Rodriguez et al., 2014) for programming

agents, and CArtAgO (Ricci et al., 2009) for programming agent environments. In

other words, multi-agent systems are valuable for conceptualizing and implementing

distributed systems. Nonetheless, surprisingly, most of the current design method-

ologies and platforms for their development fall short in addressing robustness in a

systematic way, treating exceptions as part of their design. Thus, exception handling,

despite few attempts, is usually approached by ad hoc solutions, with a negative

impact on modularity and decoupling.

2 Chapter 1 Introduction

In this work we outline a vision of how robustness in multi-agent systems can be

granted as a design property. We present an exception handling mechanism for use

in MAS that is seamlessly integrated within some of the high-level concepts that

characterize this paradigm; namely responsibilities, tasks and norms.

1.1 Motivation

Many modern systems “are complex networks of multiple algorithms, control loops,

sensors, and human roles that interact over different time scales and changing

conditions” (Woods, 2016). In sociology, such a complex network becomes a set

of constraints that make a system, which comprises many parts, to act as a whole

(Elder-Vass, 2011). The combination of individuals and relationships produces

emergent powers that enable the system to achieve goals that otherwise would not

be achievable (or not as easily). The same holds for multi-agent systems.

However, the greater complexity introduces also new fragilities, that need to be

coped with. More generally, “... this complexity itself can be a source of new

fragility, leading to ‘robust yet fragile’ tradeoffs in system design” (Alderson and

Doyle, 2010). For example, consider an autonomous vehicle, as the one described

in (Woods, 2016). It is equipped with eighteen sensor packages, basic sensor

processing/actuator controls, reasoning software based on temporal logic, sensor

fusion, multiple path, traffic, and mission planners, conflict management, health

monitoring, fault management, optimization, classifiers, models of the environment

(maps), obstacle detection, road finding, vehicle finding, and sensor validation

checks. Here, the use of protocols, of layering, and of feedback creates a complex,

multi-scale modularity that per se is exposed to many risks of failure in presence of

abnormal conditions. If we think of such a complex system as a MAS, how to gain

robustness?

Methodologies for MAS design and development typically assume that agents co-

ordinate their interactions and tasks: system-level goals can be accomplished by

taking advantage of the contribution of each agent (Timm et al., 2006). The agents’

1.1 Motivation 3

autonomy, in turn, is an enabler of the system adaptability, which is crucial to achieve

robustness: a robust system is one that adapts to stressful environmental conditions,

and components can adapt to changing contextual conditions and perturbations only

if they are autonomous in their decision process. Adaptability, however, requires the

system to be equipped with the ability to produce proper feedback, and propagate it,

so as to enable the selection and enactment of behavior that is appropriate to cope

with the situation and recover. At the same time, in a distributed system, the agent

detecting a perturbation may be not the one equipped with the means to address

it. More importantly, the agent, which may have only a partial view of the system,

could not be able to determine the impact of the specific perturbation over the

overall distributed execution. A successful handling of the perturbation would then

require the presence of a mechanism to make the detecting agents produce relevant

feedback and to clearly identify the ones designated system-wide for processing such

feedback for recovery. The lack of these mechanisms makes the system fragile.

Suppose, for instance, that an agent is requested to deliver a parcel, but the receiver’s

address is wrong. The parcel will not be delivered, but it is not the agent’s fault

nor the agent could solve the problem in isolation. As a result, the agent may be

sanctioned but this would not help to achieve the result or to solve the problem. The

system as a whole would have no information of the reasons of the failure. A proper

feedback, delivered to the right agent, in turn, would allow to adapt to the situation

and, for instance, gather the correct address for the subsequent delivery.

The problem is the lack of, broadly speaking, (i) a feedback framework and (ii) a

clear distribution of responsibilities among the agents concerning the handling of

exceptional situations. Such a lack, for instance, makes it impossible to acquire

information about possible conflicts (that remain internal to the agents), and hinders

the identification of other agents to which reassign a task because they have the skills

that are needed to cope with a perturbation and compensate. As a consequence, the

system will generally be unable of selecting alternative strategies for pursuing its

goals in presence of unfavorable conditions.

4 Chapter 1 Introduction

To tackle these conditions effectively as a consequence of a good design, we need

new conceptual and programming tools. Inspired by what has been proposed in the

field of programming languages, we claim that exception handling can provide such

a tool. As we will discuss in detail in the next chapters, exceptions allow a designer

to distribute responsibilities among agents for raising and handling exceptions. It

specifies how feedback concerning a given abnormal situation, that is collected by

an agent, must be passed to another agent, who is in position to react to it. Thanks

to such feedback, the latter agent, who in principle could even not know about the

situation, becomes aware of the perturbation and is put in condition to trigger its

internal deliberative process for deciding how to tackle it (with a straightforward

benefit to the whole system). In our view, exception handling is, then, the key to

design and develop robust multi-agent systems.

1.2 Research Objective

Given the importance of robustness in the design and development of software

systems and the challenges arising from the peculiarities of an agent-oriented

approach, as explained above, the main research objective of this manuscript is the

following one:

To present an exception handling mechanism for use in multi-agent

systems, encompassing exceptions as first-class elements, and based on the

notions of responsibility and feedback.

When agents join a MAS, they will be asked to explicitly take on the responsibilities:

(i) for providing feedback about the context where they detected exceptions, while

pursuing organizational goals, and (ii) if appointed, for handling such exceptions

once the needed information is available.

To achieve the result, we rely on the organization metaphor. Multi-agent organi-

zations (MAOs) (Corkill and Lesser, 1983; Zambonelli et al., 2003; Dignum et al.,

2004a; Dignum et al., 2004b; Hübner et al., 2007; Fornara et al., 2008; Dastani

1.2 Research Objective 5

et al., 2009), indeed, are built upon the notion of responsibility (Vincent, 2011). For

this reason, we believe that they are naturally suited to support the integration of an

exception handling mechanism. An organization typically encompasses a decomposi-

tion of a global task into sub-tasks. Sub-tasks are, then, assigned to agents by means

of norms (Boella et al., 2006; Boella et al., 2008; Singh, 2013), that orchestrate the

execution: as soon as a specific organizational task is needed to be achieved, the

normative system generates an obligation towards some agent to achieve that task.

Agents’ acceptance of the organizational constraints expressed by norms enables

them to act in a shared environment, and achieve results unachievable if they acted

in isolation.

An organization describes what is expected from the agents for achieving a global

task, based on their supposed capabilities. However, agents may fail the expectations.

When this happens, a normative system would typically react by issuing sanctions

towards the misbehaving agent. Consequently, on one hand, we can see the norma-

tive system as a means that enables the orchestration of the activities of a group of

autonomous agents, while on the other hand, in some sense we can see it also as a

means that tries to produce robustness. This because the agents are pushed to do

what is expected of them, and thus to tackle the situations the system is facing. The

rationale is to guide the agents towards the interest of the organization. The problem

is that sanctions are not generally accompanied by feedback and feedback handling

mechanisms, and thus they do not provide the right means to supports robustness

(Chopra and Singh, 2016; Baldoni et al., 2018b). To be effective, sanctions must

at least (i) be sufficiently “strong” to contrast the agents’ self-interest in pursuing

different goals of their own, and (ii) target agents that actually have the resources

and capabilities needed to face the situation of interest. In both cases robustness

would be gained only by propagating through the system information about the

reasons that caused the violation, and by revising the norms accordingly. Otherwise,

for what concerns the first condition, how to identify a right trade-off that works for

any agent without making assumptions of the agents’ internals? For what concerns

the second condition, how to propagate the reasons that caused the failure of some

6 Chapter 1 Introduction

agent? Finally, importantly, how to make such information reach the right agents,

equipped with the capabilities (and willingness) needed to recover?

In essence, current organizational models leverage norms to shape the scope of

the responsibilities that agents take when joining the organization, capturing what

they should do to contribute to the achievement of the organizational goal (Som-

merville, 2007; Sommerville et al., 2009; Feltus, 2014). We add that, in our view,

responsibilities define the scope of the exceptions, expressed with respect to the

organizational state, that agents ought to raise or handle, as well. In this work we

show how an exception handling mechanism can be grafted on the normative system

of multi-agent organizations, and its advantages in terms of increased robustness in

the execution. We claim that the concept of responsibility not only allows modeling

the duties of the agents in relation to the organizational goal, but that it also enables

the realization of mechanisms for raising and handling exceptions that occur within

the organization operation.

This is a pretty novel use of normative systems, which are traditionally used to

support the realization of correct systems. Robustness and correctness are comple-

mentary concepts: while correctness is “the ability of software products to perform

their exact tasks, as defined by their specification.” (Meyer, 1988), robustness guaran-

tees that if different cases do arise, the system will terminate its execution cleanly.

We will show that, by introducing a proper infrastructure, both properties can be

supported by the normative system, uniformly.

The proposed exception handling mechanism, despite being conceptually indepen-

dent from any specific agent programming platform, will mainly set and evaluated

within the context of the JaCaMo framework (Boissier et al., 2013), a well-known

conceptual model and programming platform for multi-agent organizations. Its

conceptual model and infrastructure have been extended in order to incorporate

exception handling at the organizational level. In particular, we will discuss how

to improve the specification of a JaCaMo organization by complementing the func-

tional decomposition of the organizational goal with a set of recovery strategies. Such

strategies realize the actual exception handling mechanism allowing agents to tackle

1.2 Research Objective 7

a given set of exceptional situations, which could occur during the achievement of

organizational goals. Recovery strategies are then mapped to dedicated organiza-

tional goals, to be assigned to the agents when a specific perturbation is detected,

in order to cope with it. Agents taking part in the organization are requested to

explicitly take on the responsibilities for these goals.

Practical use cases will be presented, as well, in order to assess the benefits of

the approach. Some of them take inspiration from the field of Business Process

Management (Weske, 2007; Van der Aalst, 2013). Indeed, business processes realize

a business goal by coordinating the tasks undertaken by multiple interacting parties.

Under this perspective, when processes are by their nature distributed, multi-agent

systems are good candidates to supply the right abstractions for realizing them.

The presented approach is strongly based on the notion of responsibility and inspired

by the sibling notion of accountability (Garfinkel, 1967; Dubnick and Justice, 2004;

Grant and Keohane, 2005; Baldoni et al., 2016; Baldoni et al., 2019). Indeed, the

main aim of this Ph.D. has been to investigate the use of the two concepts to support

the realization of robust multi-agent systems. At its core, accountability can be

reduced to a key relationship between two parties: the former (the “account taker”)

can legitimately ask, under some agreed conditions, to the other an account about a

process of interest; the latter (the “account giver”) is legitimately required to provide

such account to the account taker, if requested (Chopra and Singh, 2014). In many

cultures, accountability is associated to liability and blame (Dubnick, 2013), but

this view disregards the potential arising from the ability and designation to provide

response about something to someone who is legitimated to ask. Accountability can

be a useful tool for the realization of agent organizations that exhibit robustness as a

design property. Indeed, accountability relationships realize channels through which

feedback can be collected and propagated, so as to reach the right agents entitled to

cope with it, in analogy to what happens with exceptions.

In the last part of the thesis, we will discuss a generalization of the proposed excep-

tion handling mechanism in terms of accountability. We will show how exception

handling can be read, more generally, in respect of accountability relationships

8 Chapter 1 Introduction

among the agents participating in the organization. Accountability is an enabler for

exception handling when the account about a perturbation (i.e., an exception) is

given to the right agent, entitled to treat (i.e., handle) it and recover. Indeed, by way

of accountability, an organization designer can specify how (relevant) contextual

information produced during the achievement of goals flows from an agent to an-

other through appropriate channels. The objective is to provide an adequate context

for the account taker’s decision-making, especially in front of invalid or exceptional

situations.

It’s worth noting that it is possible to interpret many system properties as types of

robustness: reliability as robustness to component failures; efficiency as robustness

to lack of resources; scalability as robustness to changes to the size and complexity

of the system as a whole; modularity as robustness to structured component rear-

rangements; evolvability as robustness of lineages to changes on long time scales.

We believe that the presented framework can be set the ground for capturing all

these facets, as well as a wide range of non-functional requirements, besides robust-

ness, such adaptability, explainability, reusability, and transparency. Our intuition

is that these non-functional requirements are met in a distributed system when its

components (agents in our perspective), can exchange contextual information at a

different level of that of the outcomes that are specified by functional requirements.

Accountability and responsibility can be valid conceptual tools for reaching this

objective.

1.3 Thesis Outline

More in detail, the content of this manuscript is organized by following the structure

below:

Chapter 2 introduces the challenges arising from the development of robust soft-

ware by reviewing the literature on robustness in software systems, with

particular attention to exception handling models adopted in programming

languages and in distributed paradigms (such as the actor model).

1.3 Thesis Outline 9

Chapter 3 introduces multi-agent systems discussing their peculiarities and limi-

tations w.r.t. robustness. The primary approaches to exception handling that

have been proposed within the field are presented and discussed.

Chapter 4 presents an abstract model for exception handling in multi-agent systems,

preserving the main features which characterize the agent paradigm; namely

openness, heterogeneity, distribution, and autonomy. Exceptions are explicitly

encompassed as a first-class element in the design of an agent organization and

integrated with the high-level organizational concepts. An exception handling

mechanism based on the presented model is illustrated. The mechanism is built

on the idea of properly distributing responsibilities for raising and handling

exceptions among the agents taking part in the organization.

Chapter 5 describes in detail the realization of an exception handling system based

on the proposed model in the context of the JaCaMo framework for multi-agent

organizations.

Chapter 6 evaluates the proposed exception handling mechanism by discussing a

set of practical use cases. The main strengths and limitations of the approach

are discussed and compared with the alternative proposals presented in the

preceding chapters.

Chapter 7 discusses a generalization of the approach in terms of accountability

by characterizing the concept for computational use. Exception handling is

read back as a special case of accountability mechanism. Conclusions end the

manuscript and introduce possible open directions for future work.

10 Chapter 1 Introduction

Exception Handling 2
Contents

2.1 Robustness through Exception Handling 11

2.2 Exception Handling in Programming Languages 14

2.2.1 Continuations . 19

2.3 Exception Handling in Distributed Systems 20

2.3.1 The Actor Model and the Akka Framework 20

2.3.2 Supervision in Akka . 22

2.3.3 Coordinated Atomic Actions 26

2.4 Exception Handling in Business Process Management 27

2.4.1 BPMN Basics . 29

2.4.2 Error Events . 30

2.4.3 Event Subprocesses . 31

2.5 Exception Handling in Self-Adaptive Systems 32

The aim of this chapter is to introduce the main challenges related to the develop-

ment of robust software systems. Exception handling is introduced as an effective

tool to achieve robustness and the main features of some widely adopted exception

handling models are discussed.

2.1 Robustness through Exception Handling

Robustness is an important property of software systems. The “ISO/IEC/IEEE

International Standard - Systems and software engineering – Vocabulary” 2010

defines it as:

11

The degree to which a system or component can function correctly in the

presence of invalid inputs or stressful environmental conditions.

In many cases, robustness refers to a system property rather than to the system as

a whole: a property of a system is robust if it is invariant with respect to a set of

perturbations (Alderson and Doyle, 2010). This makes it possible to interpret many

system properties as types of robustness: reliability as robustness to component

failures; efficiency as robustness to lack of resources; scalability as robustness

to changes to the size and complexity of the system as a whole; modularity as

robustness to structured component rearrangements; evolvability as robustness of

lineages to changes on long time scales.

In (Fernandez et al., 2005), robustness in software systems is defined as:

The ability of a software to keep an ‘acceptable’ behavior, expressed in

terms of robustness requirements, in spite of exceptional or unforeseen

execution conditions (such as the unavailability of system resources, com-

munication failures, invalid or stressful inputs, etc.).

In other words, we can interpret robustness as the ability of a computer system to

cope with abnormal or exceptional situations (also called perturbations) occurring

during execution, which may cause the failure of some operations. For this to happen,

its components must adapt their behavior to unexpected contextual conditions,

showing some degree of autonomy in their decision process.

Let us consider a simple, but meaningful, example.

Example 1 (ATM). Money withdrawal at an ATM involves two steps: (i) the user

types the desired amount; (ii) the money is provided. Suppose the typed amount is read

as a string (e.g., “100”) and then parsed. If the string is not a number in digits (e.g.,

“one hundred”) parsing fails. Prevention is impossible because only the parsing can tell

if the data has the right format. The software realizing the ATM is robust when, instead

of crashing, it copes with the perturbation, e.g., by asking the user again and, in case of

repetitions of the mistake, by soliciting an operator.

12 Chapter 2 Exception Handling

In general, building robust systems that encompass every point of possible failure

is difficult. The availability of feedback concerning the perturbation is seen as

crucial in gaining robustness (Alderson and Doyle, 2010), yet not easy to obtain

as is the case of multi-scale systems or of distributed systems of interconnected

components. We see feedback as a piece of information, broadly speaking some facts

that are obtained retroactively, that objectively concern the execution of interest,

and that are passed from one component to another so that they can be exploited

for recovery. The significance and the quality of feedback are crucial, as well, in

making a system robust: one would not want any kind of information to be returned

but only information that is functional to the desired kind of robustness, and that

comes from a reliable and informed source.

Among the different ways to achieve robustness, exception handling (Goodenough,

1975a; Cristian, 1985; Buhr and Mok, 2000) has been successfully proposed in the

past years as a powerful yet simple software engineering technology. Exception

handling is the process of responding to the occurrence of abnormal situations during

the execution of a program. When an abnormal situation is detected (e.g. missing

parameters, unknown format) an exception breaks the normal flow of execution and

deviates it to a pre-registered exception handler, which is executed to handle the

specific situation. On completion, the execution flow is then directed back to the

program.

Recalling again the “ISO/IEC/IEEE International Standard - Systems and software

engineering – Vocabulary” 2010, an exception is defined as an:

Event that causes suspension of normal program execution.

Generally speaking, exception handling systems (EHS) provide tools (language con-

structs, primitives, etc.) to (i) identify when abnormal events occur and (ii) treat

them in order to recover. Raising (or throwing) an exception is then a way to signal

that a given piece of the program could not execute normally - for example, when

an input argument is invalid (e.g., the value is outside of the domain of a function)

or when a resource it relies on is unavailable (like a missing file, a hard disk error,

2.1 Robustness through Exception Handling 13

or out-of-memory errors) - and that the situation requires a special handling. In

this sense, we can conceive the exception as a feedback concerning the perturbation

that is passed to the handler and whose informational content is to be exploited

for recovery. Handling (or catching) the exception, in turn, refers to the set of

instructions which have to be executed to restore the normal execution flow.

2.2 Exception Handling in Programming Languages

Programming languages research was among the first to address explicitly the

concern of exception handling, with the aim of allowing programmers to build

more reliable software, more easily. The first works entirely devoted to exception

handling began to appear in the ‘70s (see (Goodenough, 1975a; Goodenough,

1975b; Goodenough, 1975c) for a set of initial proposals). The main purpose of

an exception handling system was to have systematic treatment of exceptional

conditions at the language level to either recover an appropriate program state and

resume the execution, or to terminate it ‘gracefully’, i.e. ensuring the absence of any

side-effect in stopping the execution (e.g., release reserved memory, persistent data

consistency).

Following (Goodenough, 1975b), we have that:

Of the conditions detected while attempting to perform some operation,

exception conditions are those brought to the attention of the operation’s

invoker. The invoker is then permitted (or required) to respond to the

condition.

From this seminal work, it clearly emerges that exceptions permit the user of an

operation to extend the operation’s domain (the set of inputs for which effects are

defined) or its range (the effects obtained when certain inputs are processed). They

allow tailoring an operation’s results or effects to the purpose in using the operation,

and they also allow generalizing operations, making them usable in a wider variety

of contexts than would otherwise be the case.

14 Chapter 2 Exception Handling

Consequently, an exception’s full significance is known only outside the detecting

operation: the operation is not permitted to determine unilaterally what is to be

done after an exception is raised. The invoker controls the response to the exception

that is to be activated. This increases the generality of an operation because the

appropriate “fixup” will vary from one use of the operation to the next. To this aim,

an invoker must be given enough information about the failure.

This early definition of exception condition brings forward two invariant aspects, of

primary importance for any exception handling mechanism.

1. Exception handling always involves two parties: a party that is responsible for

raising an exception, and another party that is responsible for handling it.

2. Exception handling captures the need for some feedback (i.e., exactly the

exception) that must be returned from the “invoked” to the “invoker” in order

to cope with some situation of interest.

Providing the feedback amounts to raising an exception, whereas the response to

such feedback amounts to handling it.

In summary, the author singles out the following specific properties of program

exceptions:

1. An exception significance is known outside the detecting operation; thus,

the point where an exception is raised is not also the point where it can be

handled;

2. The invoker may be permitted to terminate the invoked operation;

3. The invoker controls whether or not a default response is to be activated.

Following the discussion in (Platon, 2007), most modern programming languages

rely on a similar model of exception handling. When a program is in execution, the

invocation of an operation can encounter an exceptional condition. An operation

is any instruction or set of instructions that is called for execution. A characteristic

of the exceptional condition is that, once such an event is detected in a block of

instructions, the execution of such block cannot continue. The execution flow is

2.2 Exception Handling in Programming Languages 15

then deviated and a handler is searched so as to deal with the condition, until

the execution of the program is resumed or terminated. The search is performed

according to the current state of the program execution. Handlers are typically

associated to a syntactic unit in the code, which is an instruction or a block of

instructions. Exceptions occur in a syntactic unit and handlers are first searched

in the same one. If no handler is available where the exception has occurred, the

handler search continues by examining the handlers attached to the syntactic unit

of the previously executed instruction, which is found according to the call stack

maintained by the program. This search is called unwinding the call stack.

The call stack is a record of the series of operation invocations that are done during

the execution of the program. If no handler is available at the point where the

exception is thrown, a handler is searched in the context of the previous “caller” in

the stack. The search continues until a handler is found or when the call stack is

entirely “unwound”, which means the program cannot handle the exception at all

and must terminate.

Moreover, an exception model defines the interactions between the syntactic unit in

which the exception occurs (the thrower) and the handler. The termination model

automatically terminates the thrower and destroys any objects within its scope.

Once the exception is handled, control resumes at the next syntactic unit. In the

resumption model, in turn, the computation continues from the point where the

exception was originally thrown (Miller and Tripathi, 1997).

Many modern programming languages, such as Java, C++, C#, and Python, provide

built-in support for exception handling following the termination model. In Java,

for instance, the try, catch and throw keywords allow to define syntactic units where

exceptions could be raised and where handlers are attached.

Let us recall Example 1. An excerpt of a possible Java implementation is reported in

Listing 2.1, below.

1 public class ATMHandler {

2 private RequestHandler rh;

3 private MoneyKeeper mk;

4 public void withdraw () {

16 Chapter 2 Exception Handling

5 try {

6 int amount = rh. obtainAmount ();

7 mk. provideMoney (amount);

8 }

9 catch (AmountUnavailableException au) {

10 ... operator ...

11 }

12 }

13 ...

14 }

15
16 public class RequestHandler {

17 private Reader r;

18 private Parser p;

19 public int obtainAmount () throws AmountUnavailableException {

20 ...

21 while (! done && count < 3) {

22 amountString = r. getAmountAsString ();

23 try {

24 amountInt = p. parseAmount (amountString);

25 done = true;

26 } catch (NotANumberException nan) {

27 if (++ count == 3) {

28 throw new AmountUnavailableException ();

29 }

30 }

31 }

32 ...

33 }

34 ...

35 }

36
37 public class Reader {

38 public String getAmountAsString () { ... }

39 ...

40 }

41
42 public class Parser {

43 public int parseAmount (String amountStr) throws NotANumberException {

44 ...

45 if (...) // String is not a number in digits

46 throw new NotANumberException ();

47 ...

48 }

49 ...

50 }

Listing 2.1: Example of exception handling in Java.

2.2 Exception Handling in Programming Languages 17

Each class realizes a component of the ATM application. The ATMHandler realizes

the top layer by providing a withdraw() method encompassing the whole with-

drawal process. The amount of money is requested to the user by invoking the

obtainAmount() method offered by the RequestHandler class (see Line 6) and then

the money is provided through the invocation of the method provideMoney(...)

of class MoneyKeeper. The obtainAmount() method (Lines 19-33), again, relies on

the methods offered by two more classes: a Reader for obtaining the amount as a

string and a Parser for parsing it. Let us focus on the latter one.

The parseAmount(...) method (Lines 43-48) declares, by means of the throws

keyword, that an exception, called NotANumberException, could eventually be

thrown during its execution and propagated to the calling method. Note that the

throws keyword does not actually throw an exception. It specifies that an exception

may occur in corresponding method. The throw keyword, in turn, is used to actually

throw the exception within the method body.

To deal with this eventuality, in the caller method obtainAmount(), the keywords

try and catch allow the programmer to define the handler and the syntactic unit

where to attach it. The try block (Lines 23-26) specifies the set of instructions

whose execution must be terminated, should the exception be thrown. The catch

block, in turn, defines the set of instructions constituting the handler for the given

exception. Note that multiple catch blocks (i.e., multiple handlers) could be defined

to handle multiple exceptions and be attached to the same try block.

At runtime, should an exception occur upon invocation of parseAmount(...)

(Line 24), the execution of the block would be terminated (and the following

instruction would not be executed). The control flow would be then directed to the

handler. Upon completion the normal execution flow would be resumed starting

from the first instruction after the catch block.

The handler for NotANumberException could be also attached to other syntac-

tic units of the program (e.g., at a higher level, in the ATMHandler’s withdraw()

method). In that case, the exception would be propagated along the call stack, until

the handler is found and applied.

18 Chapter 2 Exception Handling

As a final note, we highlight that exceptions can also be nested inside handlers. In

other words, while executing a catch block to handle an exception, further exceptions

could be thrown. This is what happens, for instance, at Lines 26-30.

2.2.1 Continuations

In functional programming, a continuation (Friedman et al., 1984; Reynolds, 1993)

is an abstract representation of the control state of a program. In other words, a

continuation reifies the program control state; it is a data structure that represents

the computation at a given point in the process’ execution. In languages that support

continuations, the data structure can be accessed by the programming language,

instead of being hidden in the runtime environment. Continuations are useful for

encoding other control mechanisms in programming languages, such as coroutines,

and notably exceptions. The term was firstly introduced by Adriaan van Wijngaarden

in September 1964 (Wijngaarden, 1966).

First-class continuations are constructs that give a programming language the ability

to save the execution state at any point and return to that point later in the program,

possibly multiple times. When invoked, the current program state is replaced with

the state at which the continuation was captured.

Interestingly, continuations allow a programmer to implement exception handling

without having to rely on any dedicated mechanism built-in to the language1. As

pointed out above, when an exception is thrown, control jumps back where the try

block in which the exception occurred was created. The exception is then caught

and the handler executed, if any. If no handler is available, control jumps back again

along the call stack. Under this perspective, the call stack can be seen as a list of

continuations.

With first-class continuations, we can capture the current continuation before evaluat-

ing a try block, then execute the block, and resume the previously saved continuation

1For a simple, yet clear, introduction to continuations and how to exploit them to deal with exception
handling, check https://archive.jlongster.com/Whats-in-a-Continuation.

2.2 Exception Handling in Programming Languages 19

https://archive.jlongster.com/Whats-in-a-Continuation

if any exception occur. This is possible because continuations can be resumed with

argument values. If an exception is to be thrown within the block, the captured

continuation will be called with an exception value enabling the execution of the

appropriate handler.

2.3 Exception Handling in Distributed Systems

The exception handling model presented in the previous section is strongly based

on the assumption that the execution is sequential and the program encompasses

a single control flow. When an exception is thrown such a flow is deviated and

the call stack is unwound until a suitable handler is found. However, such an

assumption cannot be made in case of concurrent and distributed systems, where

each component controls its own execution flow and no shared call stack can be

unwound. For this reason, other mechanisms for exception handling have been

proposed, such as supervision in the context of the actor model or coordinated atomic

actions in distributed object systems.

2.3.1 The Actor Model and the Akka Framework

The notion of actor was originally introduced in 1973 in (Hewitt et al., 1973).

Throughout the years, it has become an acknowledged theoretical basis for several

practical implementations of concurrent, distributed and fault-tolerant systems,

among which Akka2 is currently one of the most established ones.

The actor model is a model of concurrent computation that conceives the actor as a

universal primitive; all computational entities are modeled as independent actors

that only communicate with others through message passing. In other words, there

is not shared state among actors.

An actor is a computational entity which has a reactive nature. In response to a

received message, it can concurrently:

2https://akka.io/

20 Chapter 2 Exception Handling

https://akka.io/

• Modify its own private state;

• Send a finite number of messages to other actors;

• Create a finite number of new actors;

• Designate the computation logic (behavior) to be used for the next message it

receives.

Messages are passed between actors asynchronously and are processed by actors

one at a time. Communication between the sender and receiver is then decoupled

and asynchronous, allowing them to execute in different threads.

Akka is one of the most popular actor model frameworks that provide a complete

toolkit and runtime for designing and building highly concurrent, distributed, and

fault-tolerant, event-driven applications on top of the Java Virtual Machine.

The main constituents of an Akka actor are (Gupta, 2012):

State The actor objects hold instance variables that have certain state values or can

be pure computational entities. These values define the state of the actor. The

actor state can be changed only as a response to a message.

Behavior A behavior encodes the computation logic to be executed in response to

a given message. Moreover, an actor can swap the existing behavior with a

new one when a certain message arrives.

Mailbox The link between the sender and the receiver of a message is called mailbox.

Every actor is attached to exactly one mailbox. When a message is sent to

the actor, it is enqueued in the actor’s mailbox, from where it will be then

dequeued for processing by the receiving actor. It is possible to configure

custom mailboxes; for instance a mailbox can be a simple message queue as

well as a priority queue.

Lifecycle Every actor that is defined and created has an associated lifecycle. Broadly

speaking, an actor lifecycle consists of three phases: (i) the actor is initialized

and started, (ii) the actor receives and processes messages by executing specific

2.3 Exception Handling in Distributed Systems 21

behaviors, and (iii) the actor stops itself when it receives a termination message.

Akka provides some predefined hooks, which are triggered in some relevant

states of the actor lifecycle, such as preStart, allowing the actor’s state and

behavior to be initialized, and postStop, to release any resource used by the

actor.

Akka actors have each their own light-weight thread, which shields the actor’s state

from the rest of the system. In this sense, actors act as black-boxes to the rest of the

system. The only way to indirectly access an Actor’s state is through messaging. In

Akka, each actor has associated a unique ActorRef which is the actor’s address, or

more precisely the address of its mailbox. The only way to send it a message is by

knowing this reference.

The term Actor System is often used to refer to a collection of actors, their mailboxes,

and their configuration.

2.3.2 Supervision in Akka

Akka actors are organized into a supervision hierarchy, which forms the basis of

Akka’s fault tolerance model. When actors are created, they are always created

as children of another existing actor, which supervises them and manages their

lifecycle. The creator actor becomes the parent of the newly created child actor.

The underlying rationale is to break down the task to perform into smaller tasks

to the point where it is simple enough to be performed by one single actor. As the

complexity of the problem grows, the actor hierarchy also expands.

Actor hierarchies are represented as path structures. At the very top of the actor

hierarchy is the root actor at /. There is then an actor called guardian whose path

is /user. Any actor created within an actor system will be created as a child of the

guardian or its descendants (e.g., /user/myActor).

Supervision is the basis of the “Let it Crash” fault tolerance model adopted by Akka.

It can be conceived as a way to move the responsibility of responding to failure

outside of the actor that can fail (Goodwin, 2015). Notably, this vision reflects

22 Chapter 2 Exception Handling

what initially postulated by Goodenough and explained in Section 2.2. Practically

speaking, this means that an actor can have other child actors that it is responsible

for supervising; it monitors the child actors (also called subordinates) for failures

and can take actions regarding the child actor’s lifecycle (e.g., restart it). Indeed,

the parent having delegated the sub-tasks, is the one who can determine the impact

of a specific failure of one of them onto the concurrent execution of the others.

Each time an actor faces a failure during the execution of a task, it can notify an

exception to its parent actor, which, in turn, should implement suitable supervision

strategies or escalate the exception to its parent again. The possible choices for the

supervisor are the following ones:

Restart The supervisor will create a new actor and replace the old one (and all

its descendants). The result is that the actor’s internal state is reset. Two

additional hooks, preRestart() and postRestart(), are available, allowing

the actor to perform some operations respectively before and after being

restarted by the supervisor;

Resume The failing actor will continue with the next message, discarding the

message whose processing caused the failure;

Stop The supervisor will terminate the subordinate actor permanently;

Escalate The exception will be notified to the supervisor’s parent which will be

then in charge for treating it.

Moreover, Akka provides two modes for the supervision strategies, which can be

adopted by actors:

One-For-One Strategy The supervision strategy is applied only to the failed child;

All-For-One Strategy The supervision strategy is applied to all the siblings of the

failed child, as well.

2.3 Exception Handling in Distributed Systems 23

Let us consider again Example 1 and illustrate how the scenario can be implemented

in Akka3.

1 class ATMHandler extends Actor {

2 val rh = context . actorOf (Props [RequestHandler]," RequestHandler ")

3 val mk = context . actorOf (Props [MoneyKeeper]," MoneyKeeper ")

4 def receive = {

5 case Withdraw => rh ! ObtainAmount

6 case AmountObtained (amount) => mk ! ProvideMoney (amount)

7 ...

8 }

9 override val supervisorStrategy = AllForOneStrategy () {

10 case _: NotANumberException => Stop

11 }

12 }

13
14 class RequestHandler extends Actor {

15 var attempts = 0

16 val r = context . actorOf (Props [Reader], " Reader ")

17 val p = context . actorOf (Props [Parser], " Parser ")

18 def receive = {

19 case ObtainAmount | Restarted => r ! GetAmountAsString

20 case AmountString (amountString) => p ! ParseAmount (amountString)

21 case ParsingDone (amountInt) =>

22 context . parent ! AmountObtained (amountInt)

23 }

24 override val supervisorStrategy = AllForOneStrategy () {

25 case _: NotANumberException =>

26 if(attempts < 2) {

27 attempts += 1

28 Restart

29 }

30 else {

31 Escalate

32 }

33 }

34 }

35
36 class Reader extends Actor {

37 def receive = {

38 case GetAmountAsString =>

39 ...

40 context . parent ! AmountString (amountString)

41 }

42 override def postRestart (reason : Throwable): Unit = {

43 super . postRestart (reason)

44 context . parent ! Restarted

45 }

46

3The Akka toolkit is available for both Java and Scala. The code illustrated in this work is written in
Scala (https://www.scala-lang.org/).

24 Chapter 2 Exception Handling

https://www.scala-lang.org/

47 }

48
49 class Parser extends Actor {

50 def receive = {

51 case ParseAmount (amountString) =>

52 ...

53 if (...) // String is not a number in digits

54 throw new NotANumberException

55 ...

56 }

57 }

58
59 class MoneyKeeper extends Actor {

60 def receive = {

61 case ProvideMoney (amount) => ...

62 }

63 }

Listing 2.2: Example of exception handling in Akka.

In analogy with the Java implementation, we realize each component of the ATM

system as a separate actor. Differently from Java, where the interaction among the

objects (i.e., classes instances) occurred through method invocations, here all the

interaction must be modeled in terms of messages to be exchanged.

The method context.actorOf(...) allows to create a new actor, as a child of the

actor in which the method is invoked. In our case the ATMHandler actor will have

two children (see Lines 2-3), as well as the RequestHandler (Lines 16-17).

Moreover, each actor is equipped with a receive method describing how the actor

should react to the reception of a given set of messages. For instance, when receiving

a Withdraw message, the ATMHandler will send an additional message to its child,

the RequestHandler, asking it to obtain the amount (Line 5). The ! operator

denotes the sending of a message.

Should the amount string not be a number in digits, the Parser actor would throw

a NotANumberException (Line 54). To deal with such a a circumstance, a suitable

supervision strategy is defined in its parent actor, namely the RequestHandler. In

particular, the parent restarts its children up to three times so that a new amount can

be collected. Note that the Restart strategy is applied to all the children because

2.3 Exception Handling in Distributed Systems 25

we have an AllForOneStrategy. After three attempts the exception is escalated to

the ATMHandler which finally handles it by stopping all its children (Lines 9-11).

Exception handling in Akka borrows the strengths of the model presented in the

previous section for sequential programs and adapts it to a distributed and concurrent

context of the actor model. Indeed, in both approaches, a clear structure, defining

how the information related to the failure (i.e. the exception) should be encoded

and should flow, is defined. In sequential programs this structure amounts to the

call stack whilst in Akka it follows the chain of parent-child relationships among

actors.

2.3.3 Coordinated Atomic Actions

Complementary to the actor model, in the context of distributed object systems,

the Coordinated Atomic Action (or CA action) concept (Xu et al., 1995; Randell

et al., 1997; Xu et al., 1998; Xu et al., 2000; Romanovsky, 2001; Pereira and

Melo, 2010) has been proposed as a unified scheme for coordinating complex

concurrent activities and supporting error recovery between multiple interacting

components. It provides a conceptual framework for dealing with different kinds

of concurrency and achieving fault tolerance by extending and integrating two

complementary concepts: conversations and transactions. Conversations are used

to control cooperative concurrency and to implement coordinated error recovery,

while transactions are used to maintain the consistency of shared resources in the

presence of failures and competitive concurrency.

A CA action performs a set of operations on a group of distributed objects atomically,

and thus behaves like a transaction. However, the body of a CA action can be multi-

threaded. In other words, CA actions also behave like conversations in that they

allow a set of threads to come together in order to perform some action atomically.

The interface of a CA action specifies the objects that are to be manipulated by the

CA action and the roles that can manipulate these objects. In order to perform a CA

26 Chapter 2 Exception Handling

action, a group of threads must come together and agree to perform each role in the

CA action concurrently with one thread per role.

During the execution of a CA action, one of the threads that are involved in the

action may raise an exception. If that exception cannot be dealt with locally by the

thread, then it is propagated to the other threads involved in the CA action. Since it

is possible for several threads to raise an exception at more or less the same time, a

process of exception resolution (Campbell and Randell, 1986) is put in place to agree

on the exception to be propagated and handled within the CA action. The notion of

exception tree allows to impose a partial order on the exceptions that could be raised

within a CA action so that a higher exception has a handler which is intended to

handle any lower level exception.

Once an agreed exception has been propagated to all of the threads involved in

the CA action, then some form of error recovery mechanism can be invoked. More

precisely, every component of the atomic action responds to the raised exception by

changing the normal control flow to an exceptional one which executes a handler

for that exception. It may still be possible to complete the performance of the CA

action successfully using forward error recovery. Conversely, it may be possible to use

backward error recovery to undo the effects of the CA action and start again, perhaps

using a different variant of each role. If it is not possible to achieve either a normal

outcome or an exceptional outcome using these error recovery mechanisms, then

the CA action is aborted and its effects undone.

2.4 Exception Handling in Business Process Management

In the context of Information Systems, Business Processes (BPs) are widely used to

capture how a service or a product is brought forth by a set of combined activities,

that may involve multiple, directly or indirectly, interacting parties. Weske, (2007)

defines a business process as:

2.4 Exception Handling in Business Process Management 27

A set of activities that are performed in coordination in an organizational

and technical environment. These activities jointly realize a business goal.

In general, a business goal is achieved by breaking it up into sub-goals, which are

distributed to a number of actors (either human or software). Each actor carries out

part of the process, and depends on the collaboration of others to perform its task.

In this context, the ability to handle perturbations possibly occurring during the

distributed execution is of uttermost importance. For this reason, modern formalisms

and notations for modeling business processes encompass fairly sophisticated excep-

tion handling mechanisms.

Business Process Management (BPM) can be defined as the combination of informa-

tion technology and management science to construct operational business processes

(Van der Aalst, 2013). In other words, BPM provides formal and practical tools to

encode a set of unstructured business activities in a structured business process,

assuring a stable and maintainable organization of work. Software systems that

supports BPM are called Business Process Management Systems (BPMS), and are

used to design, enact and manage operational business processes.

Different notations were proposed as graphical languages to express process models,

like UML (Unified Modeling Language), EPC (Event-driven Process Chain), or Petri-

nets. Petri-nets were the first graphical formalism widely (and still currently) adopted

for representing business processes. The reason can be found in the centrality of

concurrency, that Petri-nets firstly manage through fork/join primitives. A notation

that quickly became a de facto standard is BPMN (White, 2004), maintained by the

Object Management Group. Its current version is the 2.0, released in 2012. The

output of the process design with BPMN is a Business Process Diagram (BPD), a

flowchart-based graph representing the desired sequence(s) of activities in order to

obtain a specific result.

In the following we briefly introduce the BPMN notation along with its adopted

formalism to represent exception handling during the execution of a BP.

28 Chapter 2 Exception Handling

2.4.1 BPMN Basics

A BPMN diagram has a set of three core elements, which are flow objects (Silver,

2011):

Activity An activity in BPMN is an action, a unit of work performed, with a well-

defined start and end. It is represented by a rounded rectangle. Every activity

is either a task or a subprocess. A task is atomic, meaning that it has no internal

subparts described by the process model. A subprocess is compound, meaning

that it has subparts defined in the model.

Event An event is represented by a circle and encodes “something that happens”

during the course of a business process. Events usually have a cause (trigger)

or an impact (result). More precisely, a BPMN event describes how the process

generates or responds to a signal that something happened. Events are circles

with open centers to allow internal markers to differentiate different triggers

or results. There are three types of events, based on when they affect the flow:

start, intermediate, and end events.

Gateway A gateway is represented by the diamond shape and it encodes a branch

point in the process flow. Thus, it will determine traditional decisions, as well

as the forking, merging, and joining of paths. Internal markers indicate the

type of behavior control.

Flow objects are then connected together in a diagram to create the basic skeletal

structure of the business process. In particular, the sequence flow is used to show the

order in which activities have to be performed.

Figure 2.1 shows a very simple business process in BPMN. Once the process starts,

activity A is the first to be executed. Once A has been completed, the parallel gateway

denotes that activities B and C must be executed in parallel. When both activities

are completed, activity D can be performed and, after that, the process ends.

2.4 Exception Handling in Business Process Management 29

BPMN Sample

A

B

C

D

Figure 2.1: A very simple BPMN diagram.

2.4.2 Error Events

BPMN encompasses an effective mechanism for exception handling, built on top

of the notion of error event. Error events aim at handling the occurrence of errors

during the execution of a certain activity or at a certain point in the flow of a process.

An error event, in fact, represents an exception end state of a process activity.

An error event on the boundary of a task (denoted in white) represents the fact that

the task could end with an exception. The normal flow, the sequence flow out of

the task, represents the exit when the task completes successfully, and the exception

flow, the sequence flow out of the error event, is the exit when it does not.

Moreover, in expanded subprocesses error end events could also occur. Error end

events (denoted in black) are used to indicate that a certain process path ends with

an error. Such an event throws an error signal to the boundary of the subprocess,

where it is propagated outside the subprocess.

Figure 2.2 shows the BPMN diagram of a business process realizing the ATM scenario

of Example 1. The activity encoding the withdrawal can be expanded in a subprocess,

namely encompassing two activities: Obtain Amount and Provide Money. Obtain

Amount can be further expanded.

Let us focus on task Parse Amount. The task specifies a boundary error event,

encoding that the task could end unsuccessfully with a Not A Number error. Should

such a circumstance occur, the sequence flow of the process would go back to

the Count Attempts task, at the beginning of the subprocess. The amount is

30 Chapter 2 Exception Handling

ATM

Withdraw

Provide Money

Obtain Amount

Get Amount As
String Parse Amount

Attempts

Not A Number

Count Attempts

Amount Unavailable

Retry Later

<= 3

> 3

Figure 2.2: Example of exception handling in BPMN.

requested to the user up to three times. After three attempts have been performed

unsuccessfully, an error end event is triggered and an Amount Unavailable error is

propagated outside the subprocess. In the parent activity, the error is finally handled

by a dedicated Retry Later activity.

As before, error events in BPMN allow to clearly separate normal flows from ex-

ceptional ones. At the same time, they allow to define suitable handlers, uniformly

modeled as activities to be executed as soon as an error is signaled, in order to

restore the normal execution flow in the process.

2.4.3 Event Subprocesses

BPMN 2.0 introduced a further construct to model the handling of specific events

within a process: the event subprocess. An event subprocess is located within another

process and is identified by a dotted-line frame. It is triggered by a single start event

(e.g., an error event) and models the process to execute when the corresponding

event occurs in the enclosing process. Start events can be interrupting or non-

interrupting ones. Depending on the type of start event, the event subprocess will

stop the enclosing subprocess, or it will be executed simultaneously.

Event supbrocesses are typically used to handle exceptions. Figure 2.3, in particular,

shows the BPMN diagram of the ATM scenario, where the Retry Later activity

is embedded in an event subprocess triggered by the Amount Unavailable error

2.4 Exception Handling in Business Process Management 31

ATM Event Subprocess

Withdraw

Provide Money

Obtain Amount

Get Amount As
String Parse Amount

Attempts

Not A Number

Amount Unavailable

Count Attempts

Amount Unavailable

Retry Later

<= 3

> 3

Figure 2.3: Example of exception handling in BPMN with event subprocess.

event. As soon as the error event is signaled, the execution of the Withdraw process

is aborted and the subprocess is instead executed to handle the exception.

2.5 Exception Handling in Self-Adaptive Systems

The treatment of perturbations is of interest also in the perspective of self-adaptive

systems. Self-adaptive software, in particular, is capable of evaluating and changing

its behavior, whenever an evaluation shows that the system is not accomplishing what

it was intended to do, or when better performance may be possible (Macías-Escrivá

et al., 2013). In other words, a self-adaptive system has the ability to autonomously

modify its behavior at runtime in response to changes in the environment (Cheng

et al., 2009; Whittle et al., 2009; Lemos et al., 2013), such as the occurrence of

some perturbation.

Common to most of the existing approaches is the identification of four processes

which are fundamental for adaptivity: monitoring, analyzing, planning, and executing

(IBM, 2005). They constitute a sort of closed-loop control over a target system (also

known as feedback control system in control theory (Seborg et al., 2010)). These

processes together allow to monitor the system, reflect on observations for problems,

and control the system to maintain it within acceptable bounds of behavior (Garlan

32 Chapter 2 Exception Handling

Autonomic Manager

Managed Element

Sensors Actuators

Monitor

Analyze

Execute

Plan

Knowledge

Figure 2.4: MAPE-K loop in the IBM autonomic framework (IBM, 2005).

et al., 2009). The loop is illustrated in Figure 2.4 and it typically encompasses two

parts: an autonomic manager and a managed element, which could be a system or a

component within a larger system. More precisely, each phase is characterized as

follows (Garlan et al., 2009):

Monitoring concerns extracting relevant information out of the managed element;

Analyzing amounts to determining if some perturbation has occurred inside the

system (e.g., because a system property exhibits an out-of-bound value);

Planning includes the mechanisms to select a course of action to adapt the managed

element once a specific perturbation is detected;

Executing allows to schedule and perform the necessary planned changes to the

system.

All the processes share a knowledge component, which contains the models, data, and

facts needed by the autonomic manager to effectively put the adaptation process

in place. For this reason, the loop is often called MAPE-K (Monitor-Analyze-Plan-

Execute over a shared Knowledge).

As an illustration, the well-known Rainbow architecture (Garlan et al., 2009) im-

plements the MAPE-K loop with the aim of facing unexpected events. It provides

mechanisms to monitor a target system and its environment, detecting events that

2.5 Exception Handling in Self-Adaptive Systems 33

denote opportunities for adaptation, selecting a course of action to address these

opportunities, and apply changes. Once a problem is detected in the system (i.e., a

violation of an architectural constraint), an adaptation strategy that suits the problem

is selected and the framework coordinates the execution of that strategy. A specific

language to express adaptation strategies allows one to specify for what to adapt,

when to adapt, and how to adapt the system. Strategies are executed by a dedicated

module in the architecture and capture a pattern of adaptation in which each step

evaluates a set of condition-action pairs and executes an action over the system.

In (Sabatucci et al., 2018), the authors propose a unified metamodel for describing

the various categories of self-adaptation approaches. In particular, four types of

adaptive smart systems are identified, each one respectively exhibiting a greater

degree of adaptation capacity. A system belongs to the first type if it owns an entity

composed of the elements necessary to know, at design time, the environment and

to act on it. The second type additionally requires an engine that is qualified to

know the runtime model of the system, in order to possibly change or influence

the solution strategy built at design time. The third type involves a more complex

element, able to build completely new solution strategies through a repository of

established functionalities. Finally, the fourth type requires the presence of an engine

able to set up additional solution builders along with the evolution of the system.

It’s worth noting that multi-agent systems seem particularly suitable to realize

self-adaptive systems, as advocated in (Weyns and Georgeff, 2009; Macías-Escrivá

et al., 2013; Krupitzer et al., 2015). Indeed, the goal oriented-behavior, loose

coupling, and context sensitivity of agents provides the flexibility which is needed

for self-adaptivity and reuse. Nonetheless, a recurring open challenge in both fields

is related to the notion unexpected exception, i.e., a deviation from the expected

behavior of the system that is not explicitly defined “by contract”. These kinds of

exceptions are particularly difficult to tackle because the way in which they ought to

be handled, and the associated responsibility, cannot be anticipated. Instead, they

are emergent and thus suitable handlers must be built from scratch as soon as the

specific perturbation occurs, at runtime.

34 Chapter 2 Exception Handling

Exception Handling in

Multi-Agent Systems

Literature

3

Contents

3.1 Background on Multi-Agent Systems 36

3.1.1 BDI Agents . 37

3.2 The Guardian . 38

3.3 Sentinels . 40

3.3.1 Sentinel-like Agents . 41

3.3.2 Sentinels in Agent-based Grid Computing 42

3.4 SaGE in MaDKit . 43

3.5 An Agent Execution Model Encompassing Exceptions 44

3.6 Exceptions and Commitment-based Protocols 46

3.7 An Obligation-based Approach 47

3.8 Failure Handling in SARL . 48

3.9 Fault Tolerance in Jason . 49

3.9.1 Contingency Plans . 50

3.9.2 Monitoring and Supervision in eJason 51

To be suitable for MAS, an exception handling mechanism should leverage on

both the proactivity of agents and the environment in which agents are situated.

Throughout the years, different approaches have been proposed in the context of the

multi-agent systems literature. Nonetheless, no clear consensus has been reached

within the community.

35

One main difficulty arising in the development of an exception handling system for

MAS is to conjugate an effective model for exception detection and recovery with

the peculiarities characterizing the agent paradigm, i.e., autonomy, heterogeneity,

openness, distribution, and situatedness.

In this chapter, after a brief introduction to the basics of multi-agent systems, we

review the most prominent approaches that have been proposed to address the

problem of building robust and fault-tolerant MAS.

3.1 Background on Multi-Agent Systems

In the field of Artificial Intelligence (AI), a Multi-Agent System (MAS) is a comput-

erized system composed of multiple interacting computing elements (Wooldridge,

2009), called agents, within a shared and possibly distributed environment. In

these kinds of systems, agents represent several autonomous components which use

common resources and interact to achieve individual or shared goals. The motiva-

tion for studying MAS often stems from the fact that they allow to model complex,

heterogeneous, distributed and dynamic systems in a straightforward way.

Agents are characterized by some important features. First, they are autonomous,

i.e., capable (to some extent) to independently decide and take action in order to

satisfy their design objectives (Wooldridge, 2009). Second, they are capable of

interacting with others, engaging social relationship with other agents. Another

important characteristic of agents is their situatedness; agents do not exist on their

own, but inside an environment (either physical or virtual) that they can perceive

through sensors and upon which they can act through actuators (Russell and Norvig,

2002; Bordini et al., 2007; Wooldridge, 2009).

Different definitions of what an agent is have been proposed and there is no univer-

sally accepted definition of the term. However, some main properties of agents can

be identified (Wooldridge and Jennings, 1995; Wooldridge, 2009):

36 Chapter 3 Exception Handling in Multi-Agent Systems Literature

Autonomy The ability to operate without external intervention, having control

over their internal states and actions, in order to decide how to act so as to

accomplish some delegated goals;

Social ability The ability to interact with others to satisfy their goals;

Reactivity The ability to perceive the environment and timely respond to changes

occurring in it;

Proactiveness The ability to exhibit a goal-oriented behavior that is not only driven

by external events, but involves taking the initiative to satisfy their design

objectives.

Autonomy ensures that agents own control of their execution flow and private data.

The notion of autonomy is related to the one of encapsulation in object-oriented

systems. One big advantage of conceiving agents as autonomous entities, is that

autonomy increases modularity and decoupling.

Russell and Norvig, (2002) point out the importance of rationality in an agent’s

behavior. An agent is rational if it is able to select the action which maximizes a

given performance measure, according to the evidence provided by its percepts and

its internal knowledge.

3.1.1 BDI Agents

Agents are often modeled by leveraging high-level abstractions inspired from inten-

tional notions of the human behavior, borrowed from philosophy. The belief-desire-

intention (BDI) model (Bratman, 1987; Bratman et al., 1988) attributes to agents

some mental states, such as beliefs, desires, and intentions. Following (Bordini et al.,

2007), the three concepts are characterized as follows:

Beliefs represent the agent’s knowledge about the world;

Desires represent, roughly speaking, the goals delegated to the agent, i.e., the

states of affairs that the agent might want to accomplish;

3.1 Background on Multi-Agent Systems 37

Intentions represent states of affairs the agent is actively pursuing.

The agent execution model is then conceived in terms of these mentalist notions

(Shoham, 1993); actions executed by an agent are the result of a deliberation and

reasoning process consisting of the selection of what intentions to pursue among

the possible options (i.e., the agent’s desires) and according to the agent’s current

beliefs.

Nowadays, the BDI model has been widely accepted in the MAS community as an

effective theoretical framework for modeling agents. A wide number of architectures,

such as PRS (Procedural Reasoning System) (Georgeff and Lansky, 1987), and

programming languages have been proposed following such model. Some examples

include AGENT-0 (Shoham, 1993), 3APL (Hindriks et al., 1999), GOAL (Boer et al.,

2007), 2APL (Dastani, 2008), and the well-known AgentSpeak(L) (Rao, 1996),

whose most established implementations are Jason (Bordini et al., 2007) and ASTRA

(Collier et al., 2015).

Autonomy, social ability and high level of abstractions make agents particularly

suitable to build concurrent, distributed and heterogeneous systems. Heterogeneity

means that agents in a multi-agent system could be developed by different stake-

holders using different technologies, architectures and programming languages.

However, heterogeneity makes interoperability more difficult. This issue is strictly

related with the notion of openness. Open MAS are those systems where agents can

enter and leave at any time, dynamically.

As we will se in the upcoming chapters, these features, despite constituting the core

of the agent paradigm, pose some significant challenges w.r.t. the realization of an

effective exception handling mechanism.

3.2 The Guardian

As a first attempt to introduce exception handling in MAS, let us consider the

guardian. It is a model for exception handling in distributed and concurrent systems,

38 Chapter 3 Exception Handling in Multi-Agent Systems Literature

Guardian

Agent 1 Agent 2 Agent N…

Multi-Agent Application Environment

notify(e)

command

query-status

Figure 3.1: Multi-agent application environment in the Guardian model, from (Tripathi and
Miller, 2001).

originally presented in (Tripathi and Miller, 2001; Miller and Tripathi, 2004), which

realizes coordinated exception handling. The proposal was originally developed

in the context of distributed-object systems, and then mapped to a multi-agent

context. This model addresses two fundamental problems with distributed exception

handling in a group of asynchronous processes. The first is to perform recovery

when multiple exceptions are concurrently signaled. The second is to determine the

correct context in which a process should execute its exception handling actions.

The guardian in a distributed program represents a global exception handler, which

encapsulates rules for handling concurrent exceptions and directing each process to

the correct context for executing recovery actions. More in detail, the guardian is a

distributed global entity and it orchestrates the exception handling actions of a set

of agents in an application. This enables a uniform pattern for handling exceptional

situations. Global exceptions are those programming exceptions handled by the

guardian. When an exception of this kind is signaled by an agent, the guardian

applies a corresponding recovery rule that is defined by the application developer to

describe the global handling procedure. The guardian follows the rule, that usually

entails the enabling of some local exception handling procedures in the agents

impacted by the global exception.

Figure 3.1 illustrates a multi-agent application environment in the guardian model.

Agents can notify and send exceptions to their guardian. In turn, the guardian,

3.2 The Guardian 39

according to the defined recovery rules and to the agents’ contexts, can issue various

kinds of commands to its agents or it may query the internal status of an agent.

One main drawback of the proposed approach, besides a strong centralization, is that

it violates the autonomy requirement of the agent paradigm. Indeed, the guardian

can both access the agents’ internal state and direct their behavior by sending them

specific commands.

3.3 Sentinels

A similar, but more decentralized approach w.r.t. to the guardian, was previously

introduced in (Hägg, 1997). Here, sentinels are special agents introduced to realize a

fault-tolerance layer. They are specialized in error detection and recovery, guarding

certain functionalities and protecting the system from undesired states. They form a

sort of control structure to the multi-agent system.

In the proposed approach, sentinels do not partake in domain problem solving, but

they can intervene if necessary, choosing alternative problem solving methods for

agents, excluding faulty agents, altering parameters for agents, and reporting to

human operators.

It’s worth noting that sentinels have the ability to inspect (parts of) the agents’

internal states. Checkpoints allow to identify some of the agents’ beliefs deemed

accessible to a given sentinel. The author justify such an assumption, despite

decreasing the agents’ freedom, as necessary for preserving the system’s integrity.

When an exception is detected, the sentinels execute specific code to recover a

desired state.

Even if such a decision is motivated by the fact that, depending on the application

priorities, integrity could be put before autonomy, also the sentinel approach violates

the agent paradigm, since sentinels can access and execute agent’s internal code.

40 Chapter 3 Exception Handling in Multi-Agent Systems Literature

3.3.1 Sentinel-like Agents

The original sentinel-based approach presented by Hägg, 1997 has been extended

in (Klein and Dellarocas, 1999; Dellarocas and Klein, 2000). The authors propose

an approach based on a shared exception handling service providing sentinels with

handling recipes inspired from the management research, to be plugged into existing

agent systems. The approach comes from research in the context of workflow

enactments (Klein and Dellarocas, 2000).

The proposed service actively looks system-wide for exceptions and prescribes

specific interventions instantiated for the particular context from a body of general

treatment procedures. The aim of the approach is then to instantiate generic

exception handling expertise into specific situations.

The exception handling service communicates with agents using a predefined lan-

guage for detecting exceptions (the query language) and for describing exception

resolution actions (the action language). Agents can take any form as long as they

are capable of responding appropriately to at least a minimum subset of the query

and action languages. They are required, for their part, to implement a normative

behavior plus a minimal set of interfaces to report on their own behavior and modify

their actions according to the prescriptions.

When a new agent is introduced into the system, its normative behavior is mapped to

a list of the failure modes that are known to occur for that kind of normative behavior,

and sentinels are generated to detect those modes. Failure mode identification is

done making use of a taxonomy of generic problem solving processes wherein each

process is annotated with the different ways it can fail. Every failure is associated

with a script that searches for the pattern of agent behavior corresponding to the

failure. These scripts, once instantiated, play the role of sentinels, alerting the

exception handling service when the condition they were created to detect has

occurred.

Detected failures are then treated as “symptoms” by the exception handling service

to diagnose specific exceptions based on a heuristic classification. The diagnosis

3.3 Sentinels 41

hierarchy is structured as a decision tree wherein the system starts at the top most

abstract diagnosis and attempts to refine it to more specific diagnoses by traversing

down the tree and selecting the appropriate decision branches by asking questions,

expressed as query language statements, to the relevant agents.

Once one or more candidate diagnoses for an exception have been identified the

system generates specific plans for resolving the problem, by using a knowledge base

of generic exception resolution strategies. Strategies are represented as executable

script templates whose actions are described using the action language, to be

assigned to agents.

In (Klein et al., 2003) the authors propose to complete the system with a reliability

database. Failing agents are registered in the reliability database to keep track

of problems occurring with high frequency (e.g., an agent death). The database

serves the purpose of guiding sentinels in recovery procedures to improve the mean

recovery time. Moreover, in this updated proposal, each agent is associated with a

sentinel which filters all of its in- and out-going message traffic.

3.3.2 Sentinels in Agent-based Grid Computing

Another extension to the sentinel-based model has been developed by Shah et al.

to focus on an exception diagnosis mechanism for detecting when sentinel agents

should react (Shah et al., 2004; Shah et al., 2005; Shah et al., 2006). In the

proposed model, sentinel agents are provided by the MAS infrastructure and require

the problem-solving agents to cooperatively provide information regarding their

mental attitudes, whenever requested during the exception detection process. This

enables the sentinel agents to diagnose exceptions interactively and heuristically by

asking questions from affected agents through ACL messages. Exception diagnosis is

realized by means of a heuristic classifier.

When an agent joins the MAS, a sentinel agent is created and assigned to it; all

communication with the agent takes place via its associated sentinel. When an agent

plans to interact with others, it sends ACL messages via its associated sentinel, which

42 Chapter 3 Exception Handling in Multi-Agent Systems Literature

detects any abnormalities in the messages and exploits them to diagnose the possible

causes of occurring exceptions.

3.4 SaGE in MaDKit

SaGE (Souchon et al., 2003; Souchon, 2005) is an exception handling system for

multi-agent programming that extends the MaDKit platform4. It integrates exception

handling in the execution model of the agents. In MaDKit, agents hold some roles

and provide services to each other according to the roles. Handlers can be defined

and associated with the services provided by an agent, as part of its behavior. In

particular, handlers associated with a service are designed to treat exceptions that

are raised while executing the service. The objective of the service, its current state

and the impact of exceptions on its completion can be taken into account when

coding the handler.

Handlers can be associated directly with agents and roles, as well. Handlers as-

sociated with an agent are a practical means to define a single handler for all the

services provided by the given agent. Handlers associated with a role are designed

to treat exceptions that concern all agents which play a given role.

Exceptions are signaled, during the execution of services thanks to calls to a specific

primitive. When an exception is signaled, the execution of the defective service is

suspended. First, a handler searched locally, in the list of handlers associated with

the service. If such a handler is found, it is executed. If not, the search carries on

among the handlers associated with the agent that executed the defective service. If

no adequate handler is found, the exception is propagated to the client agent that

requested the service and the search continues iteratively.

Moreover, SaGE provides support for concerted exception handling (Issarny, 2001).

Indeed, as advocated in (Campbell and Randell, 1986), the occurrence of many

exceptions may be indicative of an exceptional state dependent upon the composition

4http://www.madkit.net/

3.4 SaGE in MaDKit 43

http://www.madkit.net/

of all the signaled exceptions. In SaGE, exceptions concurrently signaled by the

entities participating to a collective activity can be composed together, by a resolution

function, as a unique exception that is called concerted exception. This concerted

exception is used instead of the individual exceptions raised by the participants to

trigger handlers at the collective activity level.

To enable concerted exception support, propagated exceptions are not directly

handled, but stored in a log which is associated to the recipient service. This log

maintains the history of the so far propagated exceptions (along with information

such as the sources of the exceptions). Whenever a new propagated exception is

logged, the resolution function associated with the recipient service is executed

to evaluate the situation. Depending on the nature and the number of logged

exceptions, the function determines if an exception is to be effectively propagated.

If so, the propagated exception can be the last propagated one or a new exception

that is calculated from a set of logged exceptions, the conjunction of which creates a

critical situation.

One main limitation of SaGE in MaDKit is that agents are assumed to be benevolent

and cooperative, so the framework is not well suited for open systems where agents

are self-interested.

3.5 An Agent Execution Model Encompassing Exceptions

The work of Platon et al., instead, is focused on proposing an architecture built

upon a definition of exception explicitly encompassing the peculiarities of the agent

paradigm: openness, heterogeneity and autonomy (Platon, 2007; Platon et al.,

2007a; Platon et al., 2007b; Platon et al., 2008).

The authors propose the following definition of an agent exception, differentiating it

from the traditional notion of programming exception:

An agent exception is the evaluation by the agent of a perceived event as

unexpected.

44 Chapter 3 Exception Handling in Multi-Agent Systems Literature

Differently from programming-level exceptions, the source of an agent exception

is not an event per se, which could be related to the call-back from an operation

invocation that signals an exception. The source is instead the agent itself. It

follows that exceptions make sense inside an agent; the exceptional character of an

event depends on the point of view of each receiving agent. The decision criteria

for exception is the expectation. An agent would be able to interpret an input as

exceptional, whenever such an input does not match its expectations.

Moreover, Platon et al. point out that in a multi-agent system “there is no call stack

to rewind with an exceptional event, which must be handled in the continuity of

the agent activity.” That is to say, a mechanism handling the failure cannot disrupt

the execution cycle of the agent, as it happens for methods and actors raising

exceptions.

An execution model that encompasses exception handling is then proposed so as

to allow the agents to preserve control over themselves all along the execution

and despite the occurrence of exceptions. In particular, the proposed architecture

extends the agent perception and actuation components. The former is extended by

adding an evaluation module consisting of some relevance and expectation criteria

to classify input events (the ‘percepts’) and let the agent initiate potential exception

management when required internally.

Events classified by the evaluation are forwarded to the agent internal mechanisms

component. Here, an exception layer introduces appropriate mechanisms to deal

with exceptions, so that the agent can continue its activity despite the occurrence

of an unexpected event. Whenever exceptional conditions are detected, a handler

selection process is initiated. The component as a whole manipulates the internal

representation and its output is an action passed to the actuation for producing an

effect in the environment.

Under this perspective, exception propagation is intended as the mechanism that

describes how agents deal with exceptional situations they are unable to manage.

The term propagation is used to express that an exception is turned into a message

(e.g., a call for support) and propagated to peers that may help. This propagation is

3.5 An Agent Execution Model Encompassing Exceptions 45

from the point of view of the sender. For other agents, this propagation is just an

event that may be evaluated as an exception or not. By consequence, the use of this

expression differs significantly from programming exceptions, where propagating

an exception means ‘passing’ it along the call stack of the process until a handler is

found.

Exception handling, in turn, is the actual processing of an exceptional situation by

the agent. Handling is the execution of specific tasks, while the execution of other

activities of the agent are either unmodified (the exception case is ignored and the

execution continues) or suspended (with subsequent termination or resumption).

3.6 Exceptions and Commitment-based Protocols

Taking a different perspective, in (Mallya and Singh, 2005b; Mallya, 2005) ex-

ceptions are modeled in the context of business processes via commitments-based

interaction protocols. A social commitment C(x, y, p, q) denotes the fact that an agent

x (debtor) commits towards an agent y (creditor) to bring about a consequent

condition q if an antecedent condition p holds. Commitments have a well-defined

lifecycle and are manipulated by the agents through a set of standard operations

(Singh, 1999). A commitment protocol is defined in terms of the social commitments

that can be created by the agents; their evolution determines the possible runs of

execution.

The authors propose to deal with expected exceptions (i.e., deviations from the

normal flow that occur often enough to be part of the model) by specifying a

hierarchy of preferred runs. Preferences can be then used to define exceptional runs

and agents can reason on such preferences to decide in which enactments to take

part.

The paper proposes also an approach to deal with unexpected exceptions (i.e.,

exceptions that are detected at runtime, but are not part of the protocol model).

Exception handlers, in this case, are treated as runs just like protocols. When an

46 Chapter 3 Exception Handling in Multi-Agent Systems Literature

exceptional run is detected, a handler is searched from a library of predefined ones.

If a suitable one is available, it can be then spliced inside the given protocol (Mallya

and Singh, 2005a).

The approach proposed by the authors seems promising, although some concerns

related to scalability can be identified. Indeed, as the authors state, splicing exception

handlers at runtime requires a search through a library of handlers, that can be

computationally demanding. Conversely, inducing a preference structure over runs

requires considerable design-time effort and extensive domain specific knowledge

(which could be not always available).

3.7 An Obligation-based Approach

Still in the context of interaction protocols and of normative multi-agent systems,

Gutierrez-Garcia et al., (2009) propose an approach for exception handling in

interaction protocols, where both interaction protocols and exception handlers are

modeled through obligations. Exceptions here are seen as abnormal situations in

which agents cannot release an obligation. The obligation is canceled and, similarly

to (Mallya and Singh, 2005b), a handler, to be spliced in the protocol, is sought for

in a repository. Exception handlers are modeled as further obligations to be issued

towards the agents.

The approach we will present in the following chapter leverages obligations, as

well. Nonetheless, this approach differs from ours because: (1) it is not framed in

an organizational dimension; (2) exceptions are not first-class objects, constituting

a feedback for a failure, but are rather simply conceived as abnormal situations

emerging during the enactment of an interaction protocol. Furthermore, the proposal

is mainly theoretical, and no integration in any MAS platform is discussed.

3.7 An Obligation-based Approach 47

3.8 Failure Handling in SARL

SARL (Rodriguez et al., 2014) is a general-purpose agent-oriented programming

language and platform, which supports the notion of holonic multi-agent system

(Gerber et al., 1999; Schillo and Fischer, 2002; Fischer et al., 2003). A multi-

agent system in SARL is a collection of agents interacting together in a collection of

shared distributed spaces, grouped into contexts. Each agent exhibits a collection of

capacities, which may be then concretely implemented by various skills. An agent

may be equipped with one or more behaviors, which map a collection of perceptions

represented by events to a sequence of actions, coherent with the agent’s capacities.

An event is the specification of some occurrence in a space that may potentially

trigger effects by an agent behavior.

At the language level, SARL supports exception throwing and catching within an

agent’s code, in a similar way to what done in Java (upon which SARL is built).

Recently, the authors introduced a specific kind of event that represents any failure

or validation error that an agent could handle, if interested. Each time an agent

needs to be notified about a failure (e.g., during the execution of its tasks), an

occurrence of this event type is fired in the internal context of the agent, which may

then handle it through some suitable behavior.

At the same time, following the holonic perspective, agents can be composed of

other agents. This allows one to define hierarchical structures, called holarchies. The

SARL API provides dedicated functionalities for propagating (failure) events from

one agent to its parent in a holarchy.

One major limitation of the approach is that no explicit responsibility assumption is

made by the agents on the handling of possibly occurring failure events. In other

words, no specific relationships are established among the agents w.r.t. the raising

and handling of exceptions. For this reason, no rightful expectation can be created

within the society of agents concerning if and how failures (i.e., exceptions) will be

actually handled. At the same time, no guarantee is given about the fact that an

48 Chapter 3 Exception Handling in Multi-Agent Systems Literature

agent receiving a failure event will be equipped with the capacities to effectively

tackle the situation.

3.9 Fault Tolerance in Jason

Jason (Bordini et al., 2007) is a well-known platform, implemented in Java, for the

development of multi-agent systems based on the BDI-inspired language AgentS-

peak(L) (Rao, 1996). A Jason agent is an entity composed of a set of beliefs, i.e.,

predicates representing the agent’s current state and knowledge about the environ-

ment, a set of goals, which correspond to tasks the agent has to perform, and a set of

plans which are courses of actions, either internal or external, triggered by events.

Goals are achieved by the execution of plans. It is possible to specify achievement

(operator ‘!’) as well as test (operator ‘?’) goals. A plan, in turn, has the following

structure:

triggering_event : 〈context〉 ← 〈body〉

triggering_event denotes the event that the plan handles (a belief/goal addition or

deletion), while context specifies the circumstances in which the plan could be used.

Together, the triggering event and the context are called the head of the plan, while

the body expresses the course of action that should be taken.

The interpretation of the agent program realizes the agent’s reasoning cycle. An

agent constantly perceives the environment, reacting to events and reasoning about

how to act so as to achieve its goals, then acting so as to change the environment.

This cyclic behavior is done according to the plans available to the agent in its plan

library.

In the following, we briefly review two approaches addressing fault-tolerance in

Jason. The former, based on the notion of contingency plan, is built-in in the Jason

platform and it is conceived to address failures which occur locally to a given agent.

The latter approach, in turn proposes an extension of Jason in order to allow the

3.9 Fault Tolerance in Jason 49

specification of monitoring and supervision relations among agents to address faults

involving multiple parties.

3.9.1 Contingency Plans

Despite not explicitly encompassing the notion of agent exception, Jason provides

a mechanism to deal with failures which are local to a given agent, i.e., failures

occurring during the execution of plans. Such a mechanism follows the line drawn

by the execution model proposed by Platon et al., presented in Section 3.5. A

programmer can define dedicated contingency plans (i.e., handlers) specifying the

course of actions to undertake when a plan fails to achieve the goal it was supposed

to achieve.

Following (Bordini et al., 2007), three main causes for plan failures can be identi-

fied:

Lack of relevant or applicable plans for an achievement goal This is the case

in which a plan being executed requires a sub-goal to be achieved, and the

agent cannot achieve that.

Failure of a test goal This represents a situation in which the agent ‘expected’ to

believe that a certain property of the world holds, but in fact the property does

not hold when required.

Action failure If an action fails, the plan where it appears also fails.

While in an agent’s code standard triggering events have the form +!g for plans to

achieve goal g, -!g denotes the triggering event for the contingency plan to apply

when a plan for +!g fails. Regardless of the reason for a plan failure, the Jason

interpreter generates a goal deletion event -!g if the plan for a corresponding goal

achievement +!g has failed. If available, the contingency plan is then triggered to

‘clean up’.

50 Chapter 3 Exception Handling in Multi-Agent Systems Literature

3.9.2 Monitoring and Supervision in eJason

As a final note, we briefly review the proposal presented in (Fernández-Díaz et al.,

2015), where eJason, an Erlang-based extension of Jason with constructs for fault

tolerance, is proposed. Two fault tolerance mechanisms are introduced, allowing

detection and recovery of faults occurring in the interaction between multiple Jason

agents.

The former, called monitoring, can be used when some agent a is interested in the

execution state of another agent b. If a starts a monitoring relation with b, a will

know whether b dies, whether it leaves the system, whether it is restarted, whether

it does not belong to the system at all, or whether it is added to the system (in

case it was not yet). A monitoring relation does not impose any kind of additional

responsibility to neither the monitoring nor the monitored agents.

The supervision mechanism, in turn, allows the implementation of possibly complex

fault recovery behaviors. A supervisor agent can start a supervision relation with

some set of agents. Then, the supervisor acquires the responsibility of carrying out

certain fault recovery actions, according to a supervision policy, in order to maintain

(up to some extent) the availability of the supervised agents. The supervisor agent

handles requests from other agents that suspect the failure of some of its supervised

agents. Finally, a supervisor agent receives the ability to execute some fault detection

(ping) and fault recovery (restart, unblock, revive) actions over its supervised agents.

The supervision policies define the courses of actions of the supervisors with regards

to both fault identification and recovery. An example of a valid supervision policy is

one that requires pinging the supervised agents every 15 seconds and restarting any

of them that fail to answer to a ping two consecutive times.

The proposed mechanism bears strong similarities with the fault tolerance model

adopted in Akka (see Section 2.3). However, while in the actor model the estab-

lishment of supervision relations can be justified by the fact that a hierarchy exists

among parents and children actors, in the proposed model some concerns emerge

on how supervision relations among agents are created. Indeed, the platform allows

3.9 Fault Tolerance in Jason 51

a supervisor agent to establish a supervision relation with another agent without any

agreement from the supervised side. As a consequence, the supervisor is granted

powers to execute actions that affect the supervised agent’s lifecycle (e.g., restart),

resulting in a clear violation of the autonomy principle.

52 Chapter 3 Exception Handling in Multi-Agent Systems Literature

A Proposal for Exception

Handling in Multi-Agent

Systems

4

Contents

4.1 Challenges and Open Issues . 54

4.2 Exception Handling as Responsibility 56

4.3 Multi-Agent Organizations . 57

4.3.1 Tasks, Responsibilities and Roles in MAOs 58

4.3.2 Normative Organizations 59

4.4 Introducing Exceptions . 61

4.4.1 Recovery Strategies . 63

4.4.2 Notification Policies and Throwing Tasks 63

4.4.3 Exception Spec . 64

4.4.4 Handling Policies and Catching Tasks 65

4.5 Exception Handling in Operation 66

4.5.1 Exceptions Raised Collectively 68

4.5.2 Exceptions Handled Collectively 68

4.5.3 Recurrent Exception Handling 69

In this chapter, we present an abstract architecture for handling exceptions in an

multi-agent setting, grounded on the notions of responsibility and feedback. The

proposal relies on the same high-level abstractions that characterize the multi-agent

paradigm, thereby not interfering with the agents’ autonomy.

53

4.1 Challenges and Open Issues

As highlighted in the previous chapters, the need for exceptions emerges from the

desire of structuring and modularizing software, separating concerns into compo-

nents that interact. Exception handling enables robust software composition because

perturbations occurring in one component may affect the ones interacting with it,

as well. It systematizes the way in which feedback about a perturbation detected

in one component is delivered to, and must be addressed by, the others. This has

a positive impact in terms of generality, because the most appropriate recovery to

be applied may vary, depending on the exception receiver’s purposes. Under this

perspective, multi-agent systems bring software structuring, modularization, and

separation of concerns to an extreme – agents are autonomous and less strictly

coupled than operations in sequential programs or even actors in the actor model.

Still, autonomous agents cooperate and rely on one another to pursue their aims.

Surprisingly, however, no consensus has been reached in the field with respect to a

model for exception handling.

The proposals in the literature, reviewed in the previous chapter, try to fill in this gap,

but many of these approaches address exception handling in a way that interferes

with one of the basic principles of the agent paradigm: the autonomy of the agents.

Furthermore, importantly, no proposal conceives exception handling as originally

postulated in the seminal work of Goodenough. As a result, current conceptual

models for multi-agent systems fall short in delivering a fully-fledged exception

handling mechanism.

As pointed out in Section 2.2, Goodenough’s work on programming languages brings

forward two fundamental aspects of exception handling:

1. It always involves two parties: a party that is responsible for raising an excep-

tion, and another party that is responsible for handling it;

2. It captures the need for some feedback from the former to the latter that allows

coping with the exception.

54 Chapter 4 A Proposal for Exception Handling in Multi-Agent Systems

Notably, exception handling mechanisms adopted in programming languages and in

the actor model reflect this vision. Paralleling Goodenough’s approach, it is easy to

see a parent actor as an operation invoker and a child actor as the invoked operation.

Children actors are the ones responsible for raising exceptions when perturbations

are detected, while the parent actor is the one responsible for handling them, since

it is the one which can determine the impact of a specific failure of one child onto

the concurrent execution of the others. The exception object passed from the child

to the parent represents the feedback allowing the parent to choose which strategy

to undertake to handle the failure.

A substantial difference between MAS and actors (or operations in a program) is that

agents are not structurally bound by parent-child (or invoker-invoked) relationships.

Thus, when an agent meets a failure, it cannot easily determine which other agent

could handle the related exception. The agent that failed may ask the other agents

but, due to autonomy, it would not be guaranteed that its request would ever be

considered. The other agents, that are endowed with the right abilities, may prefer

to achieve some other goal, and, in general, the system will not provide the means

for persuading them to act otherwise. More importantly, the agents capable to solve

the problem may lack the relevant information needed for handling the exception at

hand in an effective way.

Broadly speaking, what multi-agent systems currently lack is a clear distribution

of responsibilities among agents for raising and handling exceptions. As a result,

current models do not typically encompass conceptual as well as programming tools

to allow the relevant feedback concerning the exceptional situation flow, through

appropriately devised channels, from the component (i.e., agent) involved in it to

the right components equipped with the means (capabilities, resources, willingness,

etc.) for handling it.

4.1 Challenges and Open Issues 55

4.2 Exception Handling as Responsibility

Despite the challenges outlined above, we believe that Multi-Agent Organizations

(MAOs) could provide the structure we need. Since multi-agent organizations are

built upon responsibilities, we claim that exception handling – in essence, a matter

of responsibility distribution – can be integrated seamlessly.

Key features of many organizational models are a functional decomposition of an

organizational goal and a normative system. Each agent taking part in an organiza-

tion is required to take on responsibilities for some parts of the organizational goal,

whose achievement is distributed among the agents. The normative system enables

the orchestration of the activities generating obligations towards agents to execute

tasks according to the functional decomposition and to the responsibilities taken by

them.

However, agents may fail the expectations put on them. From this perspective, we

can interpret an exception in a multi-agent organization as:

An event which denotes the impossibility, for some agent, to fulfill one of

its responsibilities – e.g. the failure in the execution of a task or a missed

deadline.

We then propose to leverage on responsibility not only to model the duties of the

agents in relation to the organizational goal, but also to enable agents to provide

feedback about exceptions, occurring within the organization operation, and to

identify those agents entitled for handling them.

When agents join an organization, they will be asked to take on the responsibilities

not only for the organizational goals, but also:

1. For providing feedback about the context where exceptions are detected while

pursuing organizational goals;

2. If appointed, for handling such exceptions once the needed information is

available.

56 Chapter 4 A Proposal for Exception Handling in Multi-Agent Systems

Agent LevelOrganizational Level
adopt/leave

take ok/leave

achieve/fail

create/delete

concept mapping

sub-task

Responsibility Task

Internal Goal

Agent

sub-group

NormRole

Group Organization

Figure 4.1: Abstract model of an agent organization.

Responsibilities, thus, become a tool to define the scope of the exceptions, expressed

with respect to the organizational state, that agents ought to raise or handle during

the achievement of the organizational goal(s).

Taking as references the conceptual models of organizations and institutions dis-

cussed in (Boissier et al., 2013; Feltus, 2014; Brito et al., 2017; Zambonelli et al.,

2003; Dignum et al., 2004a; Dignum et al., 2004b; Hübner et al., 2007), we have

distilled a general exception handling mechanism for organizational settings.

We now briefly explain the concepts commonly underpinning organizational models,

summarized in Figure 4.1 and then present the main concepts at the basis of our

proposed exception handling mechanism, together with their usage.

4.3 Multi-Agent Organizations

To face the inherent need of coordination among autonomous agents, the organiza-

tion metaphor has been used for a long time in MAS research. The organization is,

in fact, a useful mechanism for modularizing code spread over different software

components that are opaque and independent of each other.

Multi-agent organizations (MAOs) represent strategies for decomposing complex

organizational goals into simpler sub-tasks and allocating them to roles. By adopting

roles in the organization, agents acquire responsibilities and execute the correspond-

ing tasks in a distributed, coordinated and regulated fashion.

4.3 Multi-Agent Organizations 57

Agent organizations show the same kind of structure and of advantages that sociol-

ogist Dave Elder-Vass explains for human organizations: an organization provides

a structure of constraints that allows a system consisting of many parts to act as a

whole, with the aim of achieving goals that otherwise would not be achievable (or

not as easily) (Elder-Vass, 2011).

4.3.1 Tasks, Responsibilities and Roles in MAOs

Many methodologies for multi-agent organizations (e.g., (Zambonelli et al., 2003;

Dignum et al., 2004a; Hübner et al., 2007)) hinge on the concepts of Task and of

responsibility about some task. When looking back, a set of initial proposals (Corkill

and Lesser, 1983; Dignum, 2009) have defined an explicit structure of Roles and

relations, through which responsibilities of tasks are distributed by adoption of roles,

among the agents participating in the organization.

In this sense, the notion of Responsibility can assume several nuances of mean-

ing. In (Vincent, 2011), an ontology relating six different responsibility concepts

(capacity, causal, role, outcome, virtue, and liability) is proposed. Roughly speak-

ing, they respectively amount to: doing the right thing, having duties, an outcome

being ascribable to someone, a condition that produced something, the capacity to

understand and decide what to do, something being legally attributable.

From a computational point of view, the notion of responsibility has been used in a

wide number of methodologies for the design of multi-agent systems. For instance, in

Gaia (Zambonelli et al., 2003), responsibilities are used to model what agents ought

to do within the system; the functionality of a role is defined by its responsibilities.

The OperA framework (Dignum et al., 2004a) is able to define the global aims of an

organization (tasks) and the objectives and responsibilities of its participants. In this

acceptation, however, a responsibility is a duty that falls on an agent. When an agent

joins a system, thus, it could be asked to perform tasks without prior knowledge

about them. We take a different perspective: agents take on their responsibilities by

means of an explicit declaration. As said, an organization is a structure to coordinate

58 Chapter 4 A Proposal for Exception Handling in Multi-Agent Systems

the distributed execution of tasks for reaching complex objectives. In our proposal,

when agents join an organization, they accept explicitly the responsibility of some of

its tasks.

However, these models are well adapted to “closed agent organizations” where

benevolent agents, always complying, coordinate with each other to achieve their

responsibility assumptions (actions, goals or interactions).

4.3.2 Normative Organizations

A second generation of models, following the electronic institution pioneering

approaches (Esteva et al., 2001), has introduced Norms in the structure of roles,

tasks and responsibilities, giving birth to normative multiagent systems (Boella et al.,

2006; Boella et al., 2008). These social coordination frameworks (Aldewereld et al.,

2016) have the potential to target open systems. Thanks to a set of norms, the

structures of distributed responsibilities among agents have been enriched with

structures of social expectations: besides being the source of task responsibility

assumption, roles have become the anchoring point of social expectations on the

behavior of the agents who will play them.

In other words, norms allow to shape the expected behavior of the system w.r.t. the

responsibilities of the participating agents towards the distributed tasks. Through,

e.g., commitments, authorizations, prohibitions (Singh, 2013), norms can yield

obligations about the tasks that agents are held to fulfill; they are, therefore, used

to describe the ideal behavior of agents in terms of their responsibilities, rights and

duties (López y López and Luck, 2003).

As for normative MAS, normative organizations (Dignum, 2004; Dignum et al.,

2004b; Fornara et al., 2008; Dastani et al., 2009; Boissier et al., 2013) are typically

equipped with a set of mechanisms to publish, enact, adapt, monitor, and enforce

normative behaviors. Thus, once decided to adopt a role with the accompanying

norms and thus participating to the organization, agents assume the responsibility

of the targeted tasks. This assumption of responsibility corresponds to an agent’s

4.3 Multi-Agent Organizations 59

declaration of being recipient for (and hence moved by) some organizational events.

In particular, these events amount to the obligations that the normative system of

the organization issues when agents are expected to perform their tasks.

In OMNI (Dignum et al., 2004b) andMoise (Hübner et al., 2007), for instance,

a functional decomposition describes how a complex goal (task) can be achieved

in a distributed way. Agents joining the organization are expected to contribute by

achieving sub-goals of such a decomposition, whenever obligations are triggered

by the organization towards them. InMoise, agents are held to explicitly commit

to missions (i.e., subsets of goals), this act implies a taking of responsibility of the

agents towards their missions and, hence, the acceptance of the related obligations

that will be issued by the organization.

In short, all these frameworks see responsibilities as duties related to certain organi-

zational tasks that an agent has to accomplish while taking part in an organization,

and use obligations as a mechanism for coordinating agents in discharging their

responsibilities, i.e., accomplishing their tasks. The agent autonomy is preserved,

since agents can reason about the normative system, and hence can deliberate

how to act once obligations are triggered; they can even decide not to satisfy an

obligation. Thus, norms originate responsibilities in organizations (Feltus, 2014), as

well as in institutions (López y López and Luck, 2003), and responsibilities aggregate

the tasks that ought to be performed within the society of agents. As a result, a role

becomes a way to model, through norms, the powers and duties of its players within

the context of the organization. An Agent can adopt and leave a role, take and leave

a responsibility, and can achieve or fail a task by internalizing it as a goal of its own

ones.

Moreover, agents are rightfully expected by the organization to accomplish their

duties. In case of violation, they may be enforced to do so through Sanctions.

Sanctions are intended as deterrents to prevent norm violation, that is, to keep the

execution oriented towards the achievement of the organizational goal.

The problem is that when the system faces an exceptional situation and some agent

fails to complete a task, sanctions are of little utility, if any (Chopra and Singh, 2016;

60 Chapter 4 A Proposal for Exception Handling in Multi-Agent Systems

Baldoni et al., 2018b). In this case, in fact, the agent may have earnestly tried its

best to do what expected, but something which is not under its control hindered the

achievement. To have an intuition, an agent may fail to deliver a parcel because

a tree that fell blocks the only way that allows to reach the recipient. Moreover,

sanctions are not generally accompanied by any feedback and feedback handling

mechanisms oriented towards recovery, and thus they do not provide the right means

to support robustness.

4.4 Introducing Exceptions

The main idea behind our proposal consists of reviewing the basic mechanism of

exception handling in terms of responsibilities. To understand how the notion

responsibility can be used for this purpose, we need to observe that an integral

part of any exception handling mechanism is the bridge created between exception

detection and exception handling independently of the components where the

two events occur. We propose to realize such a bridge through properly devised

responsibilities. When agents join an organization, they will be asked to take on the

responsibilities not only for the organizational tasks, but also for rising exceptions

when they encounter problems in fulfilling such responsibilities, and for handling

some of the exceptions raised from others. As responsibilities “to do something”, also

responsibilities “to raise and handle exceptions” originate from the rules that govern

the organization (i.e., the norms), and as such are associated with obligations that

the organization issues whenever necessary.

In the rest of this chapter, we explain how these new sets of responsibilities can be

integrated within the organizational model described above, and how they enable

the realization of an exception handling mechanism that operates at the same level

of abstractions of the agent paradigm.

Figure 4.2 reports the abstract model of a multi-agent organization extended with

the main concepts at the basis of our exception handling mechanism.

4.4 Introducing Exceptions 61

Agent LevelOrganizational Level

1

1

Exception Spec

type

1 1

1

1Notification Policy

must-notify-when

0..1

1

0..n

1

0..n

Recovery
Strategy

1 1 Catching Task

take on/leave

Handling Policy

condition

achieve/fail

create/delete

adopt/leave

concept mapping

sub-task

Responsibility

Throwing Task

Task

Internal Goal

Agent

sub-group

Norm

RoleGroup

Organization

Figure 4.2: Abstract model of an agent organization extended for exception handling.

62
C
ha

pt
er

4
A
Pr
op

os
al

fo
rE

xc
ep

tio
n
H
an

dl
in
g
in

M
ul
ti-
Ag

en
tS

ys
te
m
s

4.4.1 Recovery Strategies

In the proposed model, exception handling is built upon the concept of Recovery

Strategy. Recovery strategies concretely realize the bridge between the agent(s)

responsible for raising a given exception and the one(s) responsible for handling

it.

For each exception deemed to possibly occur in the organizational functioning, we

then define a related recovery strategy targeting it. In other words, a recovery

strategy encodes when and how a given exception is to be raised and handled within

the organization and shapes the resulting responsibilities accordingly.

It is associated with a notification policy and one or more handling policies, govern-

ing, respectively, the raising of an exception and one (or more) task(s) to properly

tackle it.

4.4.2 Notification Policies and Throwing Tasks

Each recovery strategy encompasses a Notification Policy for the related ex-

ception. The notification policy specifies the circumstances in which the agent

responsible for throwing the exception will be asked to do so. In particular, each no-

tification policy is characterized by a must-notify-when attribute and it is associated

with a Throwing Task, an Exception Spec, and a Task.

The association between notification policy and task captures the object of the

exception to be raised. That is, the exception is related to a perturbation occurring

in an agent’s fulfillment of its responsibility concerning the given task.

The must-notify-when attribute denotes the kind of situation amounting to the

perturbation to address through exception handling, i.e. the condition which triggers

the notification policy. It can be conceived as a condition expressing the state of the

organization in which an exceptional situation occurs, thereby causing the activation

of the notification policy. In our model, such an occurrence of an exceptional

situation requires the throwing of an exception by some agent, in order to obtain

4.4 Introducing Exceptions 63

the information (feedback) needed for recovery. To this end, each notification policy

includes a Throwing Task.

A throwing task denotes the task at an organizational level of raising an exception.

Being a task, it is subject to responsibility assumption by the agents. It’s purpose is

to push the agent, by discharging its responsibility, provide relevant feedback about

the perturbation, so as to enable a successful recovery.

Notification policies bring along normative expectations that can be formulated

according to the normative layer. Indeed, norms delimit the scope of the responsibili-

ties concerning throwing tasks, too. The must-notify-when condition, in particular,

specifies when an obligation to pursue the throwing task is to be issued towards the

responsible agent(s).

It’s worth noting that throwing tasks might be structured ones, involving multiple

sub-tasks and the collaboration of multiple agents to collect and make available all

the relevant information concerning the exceptional situation.

4.4.3 Exception Spec

The notion of Exception Spec captures the shape of the piece of knowledge, i.e.,

the feedback, that the agent(s) responsible for throwing the exception has to provide

to the agent(s) in charge for handling it. Indeed, the throwing of an exception is

the result of the mapping of the corresponding throwing task to an agent’s internal

goal. The result of pursuing such an internal goal is a set of facts that gain a social

meaning as an exception, and must follow the structure specified by the exception

spec.

To give an intuition, we can conceive an exception spec as a form to be filled by

the agent in charge of executing the corresponding throwing task. The filled form

amounts to the actual exception that is thrown and is made available to the handler

agent.

64 Chapter 4 A Proposal for Exception Handling in Multi-Agent Systems

It’s worth noting that throwing an exception that follows a given exception spec

allows the thrower agent to disclose some local information, deemed relevant for

exception handling. An explicit responsibility assumption regarding a throwing task

thereby creates a social expectation regarding the fact that the agent will be actually

able to provide such information, when requested to do so.

4.4.4 Handling Policies and Catching Tasks

Handling Policies realize the second part of the above mentioned bridge, shaping

the courses of action to follow in order to handle an exception, should it be thrown

during the organization functioning.

Each recovery strategy encompasses one or more handling policies. Each handling

policy, in turn, is characterized by a condition, denoting the states of the world in

which the policy is applicable, and it is associated with a Catching Task. In analogy

with throwing tasks, catching tasks denote the task, at an organizational level, of

handling a previously thrown exception.

More precisely, a given catching task is to be assigned for achievement to its respon-

sible agent once the exception targeted by the enclosing recovery strategy has been

thrown and when the condition specified by the handling policy is verified.

A recovery strategy might include several handling policies. The rationale behind

this choice is that the occurrence of an exception might have to be handled in

different ways in different circumstances. To give an insight, a fire should be put out

either with or without water depending on the presence of electrical components.

Multiple handling policies with different activation conditions serve this purpose.

Similarly to throwing tasks, catching tasks are targets of responsibility assumption by

the agents. Since a catching task models the course of action to handle an exception,

it may amount to a complex one and may involve multiple agents, as well.

4.4 Introducing Exceptions 65

Exception

Handler agent(s)

Raising agent(s)

Environment

Organization

Perturbation

Throwing

task enabled

Obligation(Throwing

task) issued

Throw

Obligation(Catching

task) issued

Catch

Catching

task enabled

Active Raised HandledNull

Execution flow

Figure 4.3: Lifecycle of an exception in our proposed model.

4.5 Exception Handling in Operation

The diagram in Figure 4.3 illustrates the runtime lifecycle of an exception, in our

proposed model. As soon as a perturbation targeted by a given recovery strategy

occurs in the environment, the corresponding exception becomes active, and the

exception handling process is triggered. According to the specified notification

policy, the occurence of the perturbation enables, at the organizational level, one

(or more) throwing task(s) and the related obligation(s) is issued towards the

responsible agent(s). The throwing action performed by such raising agent(s)

concretely instantiates the exception, which then becomes raised. At this point, in

accordance with the handling policies included in the recovery strategy, obligations

are issued concerning the enabled catching tasks. The exception becomes finally

handled as soon as it is caught by the handler agent(s), i.e., the one(s) responsible

for the catching tasks.

More in detail, at runtime, exception handling is practically enforced within an

organization, leveraging the model above, as follows:

1. Agents take part in the organization by adopting some roles and are required

to take on the responsibilities induced by their roles explicitly. These respon-

66 Chapter 4 A Proposal for Exception Handling in Multi-Agent Systems

sibilities may concern “standard” tasks, as well as throwing and catching

tasks.

2. As soon as all the agents have taken on their responsibilities, the distributed

execution is regulated through norms. Norms enable the coordination of

the agents by determining when obligations concerning tasks must be issued

towards the responsible agents.

3. If a perturbation occurs, denoting the impossibility for some agent to fulfill

one of its responsibilities, a recovery strategy is searched to address it. The re-

covery strategy must include a notification policy applicable to the exceptional

situation at hand, i.e., it’s must-notify-when condition must amount to the

perturbation at hand. This denotes the presence of an active exception that

must be coped with.

4. The throwing task included in the selected notification policy is enabled and

an obligation concerning it is issued. To fulfill its responsibility, the responsible

agent is then required to throw an exception compliant with the exception

spec defined within the notification policy. The exception instance that is

thrown constitutes the feedback concerning the perturbation, coming from an

informed source.

5. As soon as the exception is raised (i.e., the feedback is available) an applicable

handling policy is selected among the ones defined within the scope of the pre-

viously selected recovery strategy. If multiple handling policies are applicable

to the exception at hand, all of them are applied. The corresponding catching

tasks are enabled.

6. Obligation are issued concerning the enabled catching tasks. The responsi-

ble agents can leverage the information encoded by the exception thrown

beforehand to put in place the most appropriate countermeasures to handle

the exception, fulfill their responsibilities and recover.

It is worth noting that the mechanism allows to capture a wide range of situations,

which are summarized below.

4.5 Exception Handling in Operation 67

4.5.1 Exceptions Raised Collectively

The raising of an exception may involve multiple agents. In particular, we can have

two cases (possibly combined together).

First, throwing tasks may be composite ones, involving multiple sub-tasks to be

assigned to different agents. This allows to model the fact that the raising of an

exception may be a process composed of multiple steps, requiring the collective

collaboration of multiple agents. To produce the required feedback, for instance, it

could be necessary to, first, gather relevant data, second, elaborate it, and finally

deliver it in the right format. All these actions may fall under the responsibility of

different agents.

Second, at the same time, since a given role may be played by multiple agents, should

this happen, the responsibility for a given task would be taken by all the role players.

This holds for throwing tasks, as well. Consider, for instance, a perturbation causing

the failure of a task. All the agents playing a specific role may be required to provide

a testimony, either because directly involved in the failure or because equipped with

a useful expertise.

In other words, notification policies can be effectively used as a tool to model

exceptions which have to be collectively raised by multiple agents, too. This could be

due to the fact that the throwing task is complex and cannot be achieved in isolation

or because the responsibility for it is shared among multiple agents.

4.5.2 Exceptions Handled Collectively

What explained above holds for catching tasks, as well, and enables the definition of

handling policies to enforce the collective handling of a given exception by a set of

agents. Again, multiple agents may be involved in exception handling because of

the complexity of the catching task or because being players of the same role.

A catching task composed of several sub-tasks, carried out by different agents,

allows to model structured courses of action to be put in place while handling an

68 Chapter 4 A Proposal for Exception Handling in Multi-Agent Systems

exception. Moreover, the decomposition of a catching task allows one to involve into

its execution different agents, which may be, in principle, equipped with different

capabilities and know-how, and thereby able to contribute to the recovery in different

ways.

Still as before, the same catching task may fall under the responsibility of many

role player agents. This could happen when, in order to handle the exception

effectively, the same (set of) action(s) is to be performed by many agents. Consider,

for instance, in a company, an exception denoting the presence of a malware in the

IT infrastructure. To handle the exception and solve the problem, all employees may

be required to perform an antivirus analysis over their assigned laptop.

4.5.3 Recurrent Exception Handling

Perturbations may also occur during the raising and handling of exceptions. In other

words, exceptions may be nested inside each other. In programming languages like

Java, for example, this eventuality is captured by the fact that exceptions can be

thrown also inside catch blocks.

Our exception handling mechanism allows to model this aspect, as well. Indeed,

we can easily define recovery strategies targeting perturbations which affect the

execution of further recovery strategies. For instance, a recovery strategy may be

specified so as to address the impossibility for some agent to achieve a previously

defined throwing or catching task.

Moreover, this approach enables the definitions of structured channels through

which the feedback constituting an exception can flow from one agent to another

and be used as a basis to produce further meaningful feedback (exceptions) to be

propagated throughout the system.

4.5 Exception Handling in Operation 69

In Chapter 5 we illustrate, as a use case, how the proposed exception handling

architecture has been concretely realized in the context of the well-known JaCaMo

framework for multi-agent organizations.

70 Chapter 4 A Proposal for Exception Handling in Multi-Agent Systems

Case Study: the JaCaMo

Framework

5

Contents

5.1 JaCaMo Basics . 72

5.1.1 Jason, CArtAgO andMoise 72

5.1.2 Organizational Specification 74

5.1.3 Organization Management Infrastructure 76

5.1.4 Normative Programming 78

5.2 Adding Exceptions . 80

5.2.1 Using Exceptions in the Organizational Specification . . 82

5.2.2 Using Exceptions in Jason Agent Programming 84

5.3 Implementation . 89

5.3.1 Extending the Specification’s XML Schema 89

5.3.2 Extending the Normative Program 92

5.3.3 Extending the Organizational Artifacts 99

JaCaMo is a well-known framework for the development of multi-agent systems and

organizations. For its good theoretical foundation and infrastructural maturity, it is

one of the most widely used frameworks for multi-agent organizations programming.

Nonetheless, its organizational model does not include any mechanism for handling

exceptional situations at the organizational level – i.e., situations in which some

agent does not achieve an organizational goal, thereby being unable to fulfill one

of its responsibilities. This makes JaCaMo organizations fragile because the failure

by an agent could in principle affect the achievement of the overall organizational

goal(s). When a given goal is not achieved, no support is provided for recovering

71

from the exceptional situation except issuing additional obligations concerning the

same goal towards the failing agents.

In this chapter we describe how the proposal presented in the previous chapter has

been realized in the context of the JaCaMo framework. After a short introduction to

JaCaMo, we show how we mapped our abstract model into JaCaMo’s organizational

metamodel and how we extended its infrastructure so as to encompass an exception

handling mechanism based on responsibility. To practically illustrate the usage of

the mechanism, we leverage the ATM example, already introduced in Chapter 2.

5.1 JaCaMo Basics

JaCaMo (Boissier et al., 2013) is a conceptual model and programming platform

that integrates three different multi-agent dimensions: agents, environments and

organizations. The agent dimension is used to program the individual, interact-

ing, autonomous entities. The environment dimension is used to develop shared

resources and connections to the real world. Finally, the organization dimension

allows the structuring and regulation of complex interrelations and coordination

between the agents and the shared environment.

5.1.1 Jason, CArtAgO andMoise

JaCaMo is built on top of three platforms: Jason (Bordini et al., 2007) for developing

agents, CArtAgO (Ricci et al., 2009) for programming environments and Moise

(Hübner et al., 2007) for programming organizations. As underlined by the authors,

the aim of the framework is not only to technologically integrate the cited platforms,

but also to integrate the related programming metamodels in order to simplify

the development of complex multi-agent systems. This approach results in the

realization of a high-level first-class support for developing agents, environments

and organizations in synergy. It’s interesting to point out that JaCaMo is one of the

72 Chapter 5 Case Study: the JaCaMo Framework

first works aiming at investigating the integration of these three dimensions from

both a design and a programming point of view.

Jason, already introduced in Section 3.9, is a platform for the development of multi-

agent systems based on the BDI-inspired language AgentSpeak(L) (Rao, 1996). An

agent is an entity composed of a set of beliefs, representing the agent’s current state

and knowledge about the environment, a set of goals, which correspond to tasks

the agent has to perform, and a set of plans which are courses of actions, either

internal or external, triggered by events, that can be taken by the agent in given

circumstances. An agent’s belief base is composed of a set of ground first-order

atomic formulas. A Jason plan, in turn, is specified as:

triggering_event : context← body

where the triggering_event denotes the event that the plan handles (which can be

either the addition or deletion of some belief or goal), the context specifies the

circumstances when the plan is applicable, and the body is the course of action that

should be taken.

CArtAgO is a framework and infrastructure for environment programming which

conceives the environment as a first-class abstraction and a computational layer

encapsulating functionalities and services that agents can explore and use at runtime

(Weyns et al., 2007). It is based on the Agents & Artifacts metamodel (Omicini

et al., 2008). Software environments are programmed as a dynamic set of artifacts

(programmed in Java) collected into workspaces, possibly distributed among various

nodes of a network. An agent can perceive the observable state of an artifact,

reacting to events, and can act upon it by performing actions that correspond to

operations provided by an artifact’s usage interface.

Finally,Moise implements a programming model for the organizational dimension.

It is based on the notions of roles, groups, schemes, goals, missions, and norms. It

includes an organization modeling language for specifying multi-agent organiza-

5.1 JaCaMo Basics 73

tions and an organization management infrastructure for concretely managing the

functioning of specific organization instances.

5.1.2 Organizational Specification

Moise’s organizational model explicitly decomposes the specification of an agent

organization into three further dimensions (Hübner et al., 2010b). The structural

dimension specifies roles, groups and links between roles in the organization. The

functional dimension encompasses one or more schemes that elicit how the global

organizational goals are decomposed into sub-goals and how these sub-goals are

grouped in coherent sets, called missions, to be distributed to the agents. The

normative dimension binds the previous two by specifying the role permissions and

obligations for missions.

Roles can be aggregated into groups and an instance of an organization can be

composed of several groups. Similarly more than one scheme instance can be

associated with an organization. In order to be executed, a given scheme instance

must be assigned to one or more groups that become, then, responsible for it. Agents,

in fact, are held to explicitly commit to the missions defined in the scheme, thereby

taking responsibility for mission goals.

Organizational goals are mapped into individual agents’ goals which agents can

deliberate whether to achieve or not. This delegation is made by means of obligations

according to the normative specification of the organization and the current state of

the system. In this sense, an obligation is fulfilled when the corresponding goal is

achieved by the recipient agent before a given deadline.

Listing 5.1 shows the functional specification of an organization realizing the ATM

application of Example 15.

1 <functional - specification >

2 <scheme id =" atm_sch ">

3 <goal id =" withdraw ">

4 <plan operator =" sequence ">

5 <goal id =" obtainAmount ">

5In JaCaMo, organization specifications are written in XML.

74 Chapter 5 Case Study: the JaCaMo Framework

6 <plan operator =" sequence ">

7 <goal id =" getAmountAsString " />

8 <goal id =" parseAmount " />

9 </plan >

10 </goal >

11 <goal id =" provideMoney " />

12 </plan >

13 </goal >

14 <mission id =" mGetAmountAsString " min ="1" max ="1" >

15 <goal id =" getAmountAsString " />

16 </mission >

17 <mission id =" mParseAmount " min ="1" max ="1" >

18 <goal id =" parseAmount " />

19 </mission >

20 <mission id =" mObtainAmount " min ="1" max ="1" >

21 <goal id =" obtainAmount " />

22 </mission >

23 <mission id =" mProvideMoney " min ="1" max ="1" >

24 <goal id =" provideMoney " />

25 </mission >

26 <mission id =" mWithdraw " min ="1" max ="1" >

27 <goal id =" withdraw " />

28 </mission >

29 </scheme >

30 </ functional - specification >

Listing 5.1: Functional specification of aMoise organization realizing the ATM scenario.

Here, each component is modeled as an autonomous agent taking part in the

organization. The overall goal of completing a withdrawal is reified into a single

scheme, that decomposes it into several sub-goals to be achieved in sequence. First,

the amount must be obtained from the user, and then the money provided. The

amount of money is collected first as a string and then parsed by a dedicated parser

agent. Such goals are then grouped into missions to be assigned to agents playing

specific roles.

Figure 5.1, in turn, shows an excerpt of the JaCaMo programming metamodel by ex-

plicitly representing the dependencies and mappings between the main abstractions

belonging to different dimensions. In particular agents’ external actions are mapped

into artifacts’ operations and artifacts’ observable properties and events into agents’

beliefs. At the same time, the organizational infrastructure is designed as part of the

environment in which agents are situated.

5.1 JaCaMo Basics 75

generate
update

Organization Dimension

Environment Dimension Agent Dimension

concept mappingObservable
Event

Observable
Property

OperationArtifactWorkspace

sub-group

Internal ActionExternal Action

Action

Triggering Event

Belief

PlanScheme

Mission

Goal Internal Goal

Agent

Norm

RoleGroup

Organization

Figure 5.1: JaCaMo programming metamodel, as presented in (Boissier et al., 2013).

5.1.3 Organization Management Infrastructure

In JaCaMo, the different computational entities that manage the current state of

an organization in terms of groups, schemes and normative states, which together

constitute the organizational entity, are reified in the environment by means of some

organizational artifacts, which encapsulate and enact the behavior described in the

organizational specification. Moreover, these organizational artifacts provide the

operations to be used by the agents to take part in an organization and act upon it,

and the observable properties that make the state of the organization perceivable by

the agents along with its evolution.

The main artifacts constituting the infrastructure are:

OrgBoard artifact, which keeps track of the current state of the organizational

entity overall, one instance for each organization. It provides functionalities to

create and delete groups and schemes according to a particular specification.

GroupBoard artifact, which manages the lifecycle of a specific group of agents, one

for each group. For example, it provides the operations to adopt a role in a

group, leave a given role, and add a scheme that the group will be responsible

for.

76 Chapter 5 Case Study: the JaCaMo Framework

Figure 5.2: Basic kinds of organizational artifacts in JaCaMo and their usage interfaces.

SchemeBoard artifact, which manages the execution of a social scheme, one for

each scheme, including the commitment to missions and the achievement of

goals.

NormativeBoard artifact, used to maintain information concerning the agents

compliance or not according to permissions and obligations defined between

roles and missions.

Figure 5.2 shows an abstract representation of the organizational artifacts described

above along with their usage interfaces (i.e., observable properties and operations

available to agents).

During the execution of a scheme, the goals constituting it can be in three different

states: waiting, enabled, or satisfied. The initial state is waiting, indicating that the

goal cannot be pursued yet because it depends on the achievement of other goals

(called preconditions) or the scheme is not yet well-formed, meaning that not all of

the needed agents have committed to missions, yet. The set of precondition goals are

deduced from the functional decomposition of the scheme. When the goal is ready to

be pursued, it becomes enabled. As soon as a goal becomes enabled, the obligations

to pursue it are issued towards the agents committed to a mission including the

given goal. Finally, once achieved by the responsible agents, it becomes satisfied.

Listing 5.2 shows an excerpt of possible implementation of a parser agent, responsible

for goal parseAmount in the ATM organization.

5.1 JaCaMo Basics 77

1 + obligation (Ag ,_,done(_, parseAmount ,Ag),_)

2 : . my_name (Ag)

3 <- ! parseAmount ;

4 goalAchieved (parseAmount).

5
6 +! parseAmount

7 <- parseAmount . // Operation over an environment artifact

Listing 5.2: Excerpt of the parser agent in the ATM scenario.

The agent is equipped with a plan triggered when the obligation to pursue goal

parseAmount is issued towards it. By this, the obligation is mapped to an internal

goal. The goal is practically pursued by the agent by executing some operations over

the environment. In case of success, the organizational goal is set as as achieved,

by means of the goalAchieved(...) primitive made available by the SchemeBoard

artifact.

5.1.4 Normative Programming

At runtime, the organizational specification is translated into a normative program,

written in a specific language, called NOPL (Normative Organisation Programming

Language) (Hübner et al., 2009; Hübner et al., 2010a; Hübner et al., 2011). The

interpretation of such program is performed by a dedicated interpreter, included in

each organizational artifact, and regulates the functioning of the organization.

A normative program in NOPL is composed of:

1. A set of normative facts, either translated from the specification or added

dynamically during the execution;

2. A set of inference rules;

3. A set of norms.

Normative facts and inference rules follow a syntax similar to the one used in Jason

and Prolog. Norms, in turn, have the form:

id : φ→ ψ

78 Chapter 5 Case Study: the JaCaMo Framework

Active

Fulfilled

Unfulfilled

Inactive

ϕ

¬ϕ

g

d > now

Figure 5.3: State transitions for obligations in JaCaMo, from (Hübner et al., 2009).

where id is a unique identifier, φ is a logical formula denoting the activation condition

for the norm, and ψ is the consequence of the norm activation. ψ can be either the

failure of the action triggering the norm, denoting the regimentation of a prohibition,

or the emission of an obligation directed towards an agent and concerning a state of

the world that the agent ought to bring about.

Obligations have a well-defined lifecycle, as reported in Figure 5.3. Once created,

when the activation condition φ holds, an obligation is active. It becomes fulfilled

when the agent, to which the obligation is directed, brings about the state of the

world specified by the obligation (e.g., the achievement of a goal g) before a given

deadline d. It is unfulfilled when the agent does not bring it about before the deadline.

Should φ not hold anymore, the obligation becomes inactive.

The translation of an organizational specification results in multiple NOPL programs:

a specific normative program is produced for each group or scheme and interpreted

in the corresponding artifact. Program generation follows some translation rules

(t-rules), as specified in (Hübner et al., 2011). For instance, for each goal in the

scheme, a corresponding normative fact is included in the normative program:

goal(m,g,precond,type,#achieve,ttf)

The fact defines a goal by specifying the missions m it belongs to, the goal identifier

g, its preconditions precond, the type of goal, the number of agents having to achieve

it, and its deadline ttf .

5.1 JaCaMo Basics 79

Agent DimensionOrganization Dimension

create/delete

Scheme

1

1

Exception Spec

type

1 1

1

1Notification Policy

condition

0..1

1

0..n

1

0..n

Recovery
Strategy

1 1
Catching Goal

take on/leave

Handling Policy

condition

achieve/fail

create/delete

adopt/leave

concept mapping

sub-task

Mission
(Responsibility)

Throwing Goal

Goal
(Task)

Internal Goal

Agent

sub-group

Norm

RoleGroup

Organization

Figure 5.4: Moise’s organizational metamodel extended for exception handling.

Besides facts, rules allow to infer the state of the scheme and of its goals. For

instance, the following rule states that a goal is enabled (i.e., ready to be pursued)

as soon as all its dependencies have been satisfied.

1 enabled (S,G) :- goal(_, G, dep(and ,PCG), _, NP , _) &

2 NP \== 0 \& all_satisfied (S,PCG).

Finally, norms are defined to ensure some properties, such as to avoid that more

agents than the permitted ones commit to a mission and to issue obligations regard-

ing the achievement of organizational goals.

5.2 Adding Exceptions6

With reference to the abstract model presented in the previous chapter, Figure 5.4

shows how it can be easily mapped to the concepts constituting Moise’s orga-

nizational metamodel. Indeed, we can map JaCaMo’s concepts of Mission and

Goal respectively to the concepts of Responsibility and Task of our proposed

abstract model. Similarly, here we interpret the agent commitment to a mission as

an assumption of responsibility with respect to the mission goals.

6The full code of Moise extended with exception handling is available at http://di.unito.it/
moiseexceptions.

80 Chapter 5 Case Study: the JaCaMo Framework

http://di.unito.it/moiseexceptions
http://di.unito.it/moiseexceptions

preconditions

goalReleased

Waiting goalAchieved (1...n)

resetGoal

goalFailed

goalReleased

Enabled

resetGoal

Satisfied

resetGoal

Failed

resetGoal

Released

Figure 5.5: Extended lifecycle of a JaCaMo goal.

Let us recall our definition of exception within the scope of an organization: i.e., an

event which denotes the impossibility, for some agent, to fulfill one of its responsibil-

ities. We can cast it into JaCaMo’s context by interpreting it as:

The impossibility for some agent to achieve a goal belonging to one

of the missions it committed to, when requested by the organizational

infrastructure through an obligation.

Under this perspective, an exception could amount to an obligation unfulfillment,

expressing the impossibility to achieve the corresponding goal before its deadline.

Similarly, it could be an organizational event explicitly triggered by the agent at

hand to notify a failure in the achievement of the assigned goal.

To model this aspect, we extended the lifecycle of a goal instance with two additional

states: failed and released, as shown in Figure 5.5. A goal failure is eventually

signaled by the agent responsible for it, similarly to goal achievement, denoting the

impossibility for the agent to achieve the goal. Conversely, an agent can release a

goal, meaning that the goal had not been achieved as planned, but some corrective

actions have been undertaken and the execution of the scheme can proceed (as if

the goal were satisfied).

5.2 Adding Exceptions 81

5.2.1 Using Exceptions in the Organizational Specification

In accordance with the general model, for each exception deemed to possibly occur

during the execution of a scheme, we enriched the scheme specification with the

following concepts:

Recovery Strategy encodes when and how a given exception is to be raised and

handled within the organization. Its role is to relate the raising of an exception

to the agent in charge of handling that exception. As in the abstract model, it

includes a notification policy and one or more handling policies.

Notification Policy specifies when the exception must be raised. It is characterized

by a condition denoting the state of the organization management infrastruc-

ture corresponding to the exceptional situation. It is also associated with a

goal representing the object of the exception (i.e., the goal that could not be

completed), and with a throwing goal, to be enabled when such a circumstance

hold.

Throwing Goal denotes the organizational goal of raising the exception, i.e., it will

make the agent that is responsible for it to provide the information that is

needed for recovery.

Exception Spec encodes the kind of feedback to be produced by the agent raising

the exception, namely a set of ground first-order facts.

Handling Policy specifies a way in which the exception must be handled, once the

needed information is available. It is characterized by a condition expressing

the state of the organization management infrastructure in which the policy is

applicable and it is associated with a catching goal.

Catching Goal captures the course of action to handle the exception and remediate.

The aim of its achievement is to restore the normal execution of the scheme

after an exception is raised.

Throwing goals and catching goals specialize the goal specification and are incor-

porated into mission just like standard ones. As a result, missions become a tool to

82 Chapter 5 Case Study: the JaCaMo Framework

distribute the responsibilities, not only concerning the normal execution, but also

for the management of exceptional situations. Policies, in turn, delimit the scope of

such responsibilities, specifying when and how they are to be discharged.

The purpose of throwing goals, in particular is to make agents produce the relevant

feedback concerning the reasons of the failure in case of exceptions. Catching goals,

in turn, allow to involve in the recovery the right agents entitled for it.

Let us recall again Example 1. We can now extend the specification of the ATM

scheme, in Listing 5.1, with the following recovery strategy targeting a not a

number exception, possibly arising from the failure of goal parseAmount.

1 <recovery - strategy id ="..." >

2 <notification - policy id ="..." >

3 <condition type =" goal - failure ">

4 <condition - argument id =" target " value =" parseAmount " />

5 </condition >

6 <exception -spec id =" nan">

7 <exception - argument id =" index " arity ="1" />

8 </exception -spec >

9 <goal id =" throwNan " /> <!-- THROWING GOAL -->

10 </ notification -policy >

11 <handling - policy id ="..." >

12 <condition type =" always " />

13 <goal id =" recoverFromNan " /> <!-- CATCHING GOAL -->

14 </handling -policy >

15 </recovery -strategy >

Listing 5.3: Recovery Strategy for a not a number exception in the ATM organizational

specification.

Both the notification policy and the handling policy constituting the recovery strategy

encompass a condition, denoting when the given policy is applicable. Each condition

is characterized by a type and a (possibly empty) list of arguments, depending on

the condition type. For notification policies, the condition expresses the perturbation

being handled (i.e., the must-notify-when attribute in the abstract model). In

this case, the condition at Lines 3-5 expresses that the policy is to be applied

when a failure occurs in the achievement of goal parseAmount. As a consequence,

the throwing goal throwNan (Line 9) is enabled and the agent responsible for it

is required to throw the exception, i.e., provide a feedback complying with the

exception spec included in the policy. Each exception spec is characterized by a

5.2 Adding Exceptions 83

Type Arguments Condition formula

always [] true

goal-failure [target] scheme_id(S) & failed(S,$target)

goal-ttf-expiration [target] scheme_id(S) & unfulfilled(obligation(_,_,done(S,$target,_),_))

custom [formula] $formula

Table 5.1: Condition types for recovery strategies.

(possibly empty) list of arguments, specifying first order predicates (together with

their arity) to be instantiated while throwing the exception. In this case (see Lines 6-

8) the exception nan (not a number) must be thrown by specifying an index (e.g.,

the index of the first non numerical character found).

Similarly, the condition in a handling policy specifies when such policy is applicable.

We recall that a recovery strategy could encompass more than one handling policies,

each one applicable in different circumstances. The condition allows to determine

when the corresponding catching goal (Line 13) must be enabled. In this case the

condition type always states that the policy is applicable in any circumstance, as

soon as the related exception has been thrown.

Condition types and arguments are mapped to logical formulas in the normative

program (see Section 5.3 for a detailed discussion). Table 5.1 summarizes the

condition types we have identified, along with their arguments and the correspond-

ing formulas in NOPL7. In the logical formulas, placeholders starting with $ are

substituted with the actual value specified for the corresponding argument. Custom

conditions can be expressed as well, by directly specifying the corresponding formula

as an argument.

5.2.2 Using Exceptions in Jason Agent Programming

The proposed exception handling architecture, whose implementation will be dis-

cussed in detail in Section 5.3, is seamlessly integrated into the organization manage-

ment infrastructure. For this reason, agent programming in standard JaCaMo and in

7Condition types are stored in a dedicated configuration file. If needed, new condition types can be
easily added by specifying the condition type, arguments and the corresponding forumla in NOPL.

84 Chapter 5 Case Study: the JaCaMo Framework

Environment
Organizational

Infrastructure

2. obligation(TG)

3. throwException(E,Args)

5. obligation(CG)

1. perturbation

perceive/act

4. goalAchieved(TG)

6. goalAchieved(CG)

Handler

agent(s)

Raising

agent(s)

Active

Raised

Handled

Figure 5.6: Interaction between agents and organization for exception handling.

our proposed extension follows a uniform approach. Agents, when entering into an

organization, take on some responsibilities by committing to missions. On the basis

of these responsibilities and of the state of the organization, the infrastructure issues

obligations to achieve organizational goals, thereby coordinating the distributed

execution of the scheme.

Agent developers are then required to implement the set of plans to make their

agents able to fulfill their responsibilities, achieving the goals expressed by the

obligations directed to them. With the exception handling mechanism put in place,

agents will also have the possibility to notify the impossibility to achieve some of

these goals, resulting in the occurrence of some exceptions.

Figure 5.6 shows the typical interaction schema, between the involved agents and the

organizational infrastructure, for handling the occurrence of an exception. Recalling

the diagram in Figure 4.3, the different steps are highlighted in shades of grey

denoting how each JaCaMo-specific one contributes to the evolution of the general

lifecycle status of the exception at hand (from active, to raised, to handled). As

soon as a perturbation is detected, a suitable recovery strategy is searched and

the corresponding notification policy is activated. An obligation to achieve the

specified throwing goal TG is then issued to the agent responsible for it. To fulfill its

responsibility, the agent will have to throw the corresponding exception, providing

5.2 Adding Exceptions 85

appropriate exception arguments. The exception is considered as fully raised once

the throwing goal TG is marked as achieved. This enables one (or more) handling

policy and the obligation(s) for the related catching goal(s) CG is issued. Again,

the exception is treated as handled only once the catching goal(s) CG is marked as

achieved.

Listing 5.4 shows the implementation of the parser agent, responsible for goal

parseAmount in the ATM organization, extended for exception handling.

1 + obligation (Ag ,_,done(_, parseAmount ,Ag),_)

2 : . my_name (Ag)

3 <- ! parseAmount ;

4 goalAchieved (parseAmount).

5
6 +! parseAmount

7 <- parseAmount . // Operation over an environment artifact

8
9 -! parseAmount

10 <- goalFailed (parseAmount);

11 .fail.

12
13 +! throwNan

14 : // Retrieve index I of the first non - numeric character

15 <- throwException (nan ,[index (I)]).

Listing 5.4: Parser agent in the ATM organization, extended for exception handling.

We can extend the agent’s code with a contingency plan (see Section 3.9.1), at

Line 9, to be triggered should parsing fail. The failure, which at this point is local

to the agent, causes the impossibility to achieve the organizational goal as well.

The agent has then the possibility to inform the organizational infrastructure by

executing the goalFailed(...) operation at Line 10.

The agent is also equipped with an additional plan, at Line 13, triggered as soon

as the agent receives an obligation for the organizational goal throwNan8. This

goal is the throwing goal included in the notification policy specified in Listing 5.3,

targeting right the failure of parseAmount. In other words, the agent is responsible

not only for performing the actual parsing, but also to provide a feedback, should an

8We recall that in JaCaMo a library of predefined plans allows to map obligations to agents’ internal
goals automatically. For this reason in some cases we might have, as a plan triggering event,
directly the corresponding internal goal rather than the issued obligation. The library also marks
the organizational goal as achieved as soon as the internal goal is achieved.

86 Chapter 5 Case Study: the JaCaMo Framework

exception occur in the execution of its assigned task. To fulfill this responsibility, the

agent must throw a nan exception and provide the index of the first non-numeric

character identified (see Line 15). The primitive throwException(...) serves

this purpose. More details about the operations provided by the organizational

infrastructure to support exception handling can be found in Section 5.3.3.

Listing 5.5 below, in turn, reports the code of the request handler agent, which is

responsible for handling the exception thrown by the parser.

1 attempts (1).

2
3 + obligation (Ag ,_,done(_, recoverFromNan ,Ag),_)

4 : . my_name (Ag) &

5 attempts (N) & N < 3

6 <- -attempts (N);

7 + attempts (N+1);

8 resetGoal (obtainAmount).

9
10 + obligation (Ag ,_,done(_, recoverFromNan ,Ag),_)

11 : . my_name (Ag) &

12 attempts (N) & N >= 3

13 <- goalFailed (recoverFromNan).

14
15 + obligation (Ag ,_,done(_, throwAmountUnavailable ,Ag),_)

16 : . my_name (Ag)

17 <- throwException (amountUnavailable ,[errorCode (...)]);

18 goalAchieved (throwAmountUnavailable).

Listing 5.5: Request handler agent in the ATM organization.

The recovery strategy specifies a handling policy encompassing a catching goal

recoverFromNan. As soon as the nan exception is thrown by the parser, such a goal

becomes enabled and the corresponding obligation issued to the request handler. It’s

worth noting that the agent remains completely free to autonomously deliberate the

best course of actions in order to concretely deal with the exceptional situation. The

rationale is that, by virtue of its taken responsibilities, the agent should be the one

deemed to have the right expertise to solve (or at least mitigate) the problem.

In this case, the agent is equipped with two alternative plans (Lines 3 and 10). The

approach adopted by the agent to deal with the nan exception is to make the user

insert another amount, up to three times. To this end, the agent keeps track of

5.2 Adding Exceptions 87

the number of attempts made so far (Line 1). If the number of attempts is less

than three, the first plan is triggered and the exception is handled by resetting goal

obtainAmount.

As already pointed out, it’s worth noting that throwing and catching goals may fail,

as well, causing the occurrence of further exceptions. This is exactly what happens

after three unsuccessful parsing attempts. In that case, the obligation to pursue the

catching goal recoverFromNan triggers the second plan, at Line 10, leading to the

failure of the goal itself (see Line 13). To cope with the exception, an additional

recovery strategy can be added to the functional specification of the organization, as

reported in Listing 5.6, below.

1 <recovery - strategy id ="..." >

2 <notification - policy id ="..." >

3 <condition type =" goal - failure ">

4 <condition - argument id =" target " value =" recoverFromNan " />

5 </condition >

6 <exception -spec id =" amountUnavailable ">

7 <exception - argument id =" errorCode " arity ="1" />

8 </exception -spec >

9 <goal id =" throwAmountUnavailable " />

10 </ notification -policy >

11 <handling - policy id ="..." >

12 <condition type =" always " />

13 <goal id =" retryLater " />

14 </handling -policy >

15 </recovery -strategy >

Listing 5.6: Recovery stategy targeting the amount unavailable exception.

The recovery strategy encompasses a notification policy targeting the failure of goal

recoverFromNan. An exception spec amountUnavailable is defined including an

argument called errorCode (see Lines 6-8).

Let us assume that the responsibility for the throwing goal is taken by the request

handler agent, too, and that the responsibility for the catching goal is taken by an

ATM handler agent, in charge of supervising the functioning of the ATM as a whole.

As soon as recoverFromNan is marked as failed, goal throwAmountUnavailable is

enabled and assigned to the request handler for achievement, triggering the plan at

88 Chapter 5 Case Study: the JaCaMo Framework

Line 15 in Listing 5.5. The agent then fulfills the obligation by concretely throwing

the exception and specifying the needed error code (Line 17).

Finally, Listing 5.7 shows an excerpt of the ATM handler agent’s code.

1 +! retryLater

2 : exceptionArgument (amountUnavailable , errorCode (...))

3 <- closeSession ;

4 goalReleased (withdraw).

Listing 5.7: ATM handler agent in the ATM organization.

The plan above allows the agent to fulfill the responsibility concerning catching

goal retryLater. In this particular case, the exception is handled by closing the

session with the user and by releasing the root goal of the scheme, i.e., withdraw. By

doing that, the agent notifies that the initial organizational goal won’t be achieved

anymore, and the execution of the scheme is stopped gracefully.

The belief in the plan context (Line 2) amounts to an observable property of the

organizational artifacts encoding the argument specified by the request handler

while throwing the exception, i.e., the error code in this case. It’s worth noting that

multiple plans could be defined, encompassing different courses of actions to deal

with the exception, depending on the error code at hand.

5.3 Implementation

We now illustrate how theMoise’s infrastructure has been concretely extended to

support exception handling, as shown above.

5.3.1 Extending the Specification’s XML Schema

As said, in JaCaMo, organizational specifications are written in XML. To realize

the picture described in Section 5.2.1, we extended the XML schema that formally

describes howMoise organizations must be specified.

5.3 Implementation 89

In particular, we extended the scheme element definition so that any scheme can

encompass a variable number of recovery strategies, as follows.

1 <xsd: element maxOccurs =" unbounded " minOccurs ="0" name =" scheme ">

2 <xsd: complexType >

3 <xsd:sequence >

4 <xsd: element maxOccurs ="1" minOccurs ="0"

5 name =" properties " type =" moise : propertiesType "/>

6 <xsd: element maxOccurs ="1" minOccurs ="1"

7 name =" goal" type =" moise : goalDefType "/>

8 <xsd: element maxOccurs =" unbounded " minOccurs ="0"

9 name =" recovery - strategy "

10 type =" moise : recoveryStrategyType "/>

11 <xsd: element maxOccurs =" unbounded " minOccurs ="0"

12 name =" mission " type =" moise : missionType "/>

13 </xsd:sequence >

14 <xsd: attribute name =" id" type =" xsd: string "/>

15 </xsd: complexType >

16 </xsd:element >

Listing 5.8: scheme element extended inMoise’s XML schema.

Besides goals and missions, a scheme can include zero-to-many recovery strategy

elements, identified by the tag recovery-strategy (Lines 8-10).

Furthermore, we introduced the following new element types, describing the con-

cepts related to exception handling.

1 <xsd: complexType name =" recoveryStrategyType ">

2 <xsd:sequence >

3 <xsd: element maxOccurs ="1" minOccurs ="1"

4 name =" notification - policy "

5 type =" moise : notificationPolicyType "/>

6 <xsd: element maxOccurs =" unbounded " minOccurs ="0"

7 name =" handling - policy "

8 type =" moise : handlingPolicyType "/>

9 </xsd:sequence >

10 <xsd: attribute name =" id" type =" xsd: string " use =" required "/>

11 </xsd: complexType >

Listing 5.9: Element type encoding a recovery strategy inMoise’s XML schema.

Each recovery-strategy element is characterized by an id and must include

exactly one notification policy (identified by the tag notification-policy) and

zero-to-many handling policies (tag handling-policy).

1 <xsd: complexType name =" notificationPolicyType ">

2 <xsd:sequence >

90 Chapter 5 Case Study: the JaCaMo Framework

3 <xsd: element maxOccurs ="1" minOccurs ="0"

4 name =" properties " type =" moise : propertiesType "/>

5 <xsd: element maxOccurs ="1" minOccurs ="1"

6 name =" condition " type =" moise : conditionType "/>

7 <xsd: element maxOccurs ="1" minOccurs ="1"

8 name =" exception -spec" type =" moise : exceptionSpec "/>

9 <xsd: element maxOccurs ="1" minOccurs ="1"

10 name =" goal" type =" moise : goalDefType "/>

11 </xsd:sequence >

12 <xsd: attribute name =" id" type =" xsd: string " use =" required "/>

13 </xsd: complexType >

Listing 5.10: Element type encoding a notification policy inMoise’s XML schema.

Each notification-policy element has an id and includes a condition, express-

ing the activation condition of the policy, an exception-spec element and a goal

element (i.e., the throwing goal).

1 <xsd: complexType name =" conditionType ">

2 <xsd:sequence >

3 <xsd: element maxOccurs =" unbounded " minOccurs ="0"

4 name =" condition - argument "

5 type =" moise : conditionArgumentType "/>

6 </xsd:sequence >

7 <xsd: attribute name =" type" type =" xsd: string " use =" required " />

8 </xsd: complexType >

9 <xsd: complexType name =" conditionArgumentType ">

10 <xsd: attribute name =" id" type =" xsd: string " use =" required "/>

11 <xsd: attribute name =" value " type =" xsd: string " use =" required " />

12 </xsd: complexType >

Listing 5.11: Element type encoding a policy condition inMoise’s XML schema.

condition elements allow to specify the activation conditions of notification and

handling policies. Each condition has a type (see Table 5.1) and encompasses

a (possibly empty) set of condition-arguments. A condition-argument is a key-

value pair.

1 <xsd: complexType name =" exceptionSpec ">

2 <xsd:sequence >

3 <xsd: element maxOccurs =" unbounded " minOccurs ="0"

4 name =" exception - argument "

5 type =" moise : exceptionArgumentType "/>

6 </xsd:sequence >

7 <xsd: attribute name =" id" type =" xsd: string " use =" required " />

8 </xsd: complexType >

9 <xsd: complexType name =" exceptionArgumentType ">

10 <xsd: attribute name =" id" type =" xsd: string " use =" required "/>

5.3 Implementation 91

11 <xsd: attribute name =" arity " type =" xsd: integer " use =" required " />

12 </xsd: complexType >

Listing 5.12: Element type encoding an exception spec inMoise’s XML schema.

Similarly, exception-spec elements encode exception specifications. Each element

of this type has an id and a (possibly empty) set of exception arguments. Each

argument is characterized by an id and an arity. id and arity specify the functor

name and the arity of one of the predicates that will have to be instantiated by the

agents while raising an exception compliant with the exception spec at hand.

1 <xsd: complexType name =" handlingPolicyType ">

2 <xsd:sequence >

3 <xsd: element maxOccurs ="1" minOccurs ="0"

4 name =" properties " type =" moise : propertiesType " />

5 <xsd: element maxOccurs ="1" minOccurs ="1"

6 name =" condition " type =" moise : conditionType " />

7 <xsd: element maxOccurs ="1" minOccurs ="1"

8 name =" goal" type =" moise : goalDefType "/>

9 </xsd:sequence >

10 <xsd: attribute name =" id" type =" xsd: string " use =" required " />

11 </xsd: complexType >

Listing 5.13: Element type encoding a handling policy inMoise’s XML schema.

Finally, as before, each handling-policy element has an id. It includes an activa-

tion condition and a goal element (the catching goal).

5.3.2 Extending the Normative Program

At runtime, the XML specification of a JaCaMo organization is then translated into a

set of normative NOPL programs, which address groups and schemes. We extended

the normative program resulting from the translation of the scheme specification

with the concepts of Recovery Strategy, Notification Policy, Throwing Goal,

Exception Spec, Handling Policy, and Catching Goal. We now explain the facts,

rules and norms that result from the translation of recovery strategy specifications,

which together constitute the core of our exception handling mechanism.

92 Chapter 5 Case Study: the JaCaMo Framework

Facts. For each scheme, we enrich the normative program with the following

normative facts.

recoveryStrategy(RS) denoting that the scheme includes a recovery strategy with

id RS.

notificationPolicy(NP,Condition) encoding a notification policy with id NP.

Condition is the logical formula mapped from the policy condition, as de-

scribed in Table 5.1.

handlingPolicy(HP,Condition) for an handling policy with id HP and condition

Condition.

strategy_policy(RS,P) encoding that a given policy P belongs to a recovery strat-

egy RS.

policy_goal(P,G) specifying the relation between a goal G and the policy P it

belongs to. Depending on the kind of policy (either a notification or a handling

one) the goal will be a throwing goal or a catching goal.

exceptionSpec(E) for an exception specification with id E.

policy_exceptionSpec(NP,E) denoting that the exception spec E is defined within

the scope of notification policy NP.

exceptionArgument(E,ArgFunctor,ArgArity) denoting that the exception spec

E encompasses an argument, which consists of a first-order predicate with

functor ArgFunctor and arity ArgArity. Multiple arguments can be associated

with a given exception spec.

Moreover, the following normative facts may be dynamically added during the

execution of the scheme, as a result of the execution of specific operations over

the SchemeBoard artifact (see Section 5.3.3). Dynamic facts, added or inferred at

runtime, constitute the normative state of the organization.

failed(S,G) denoting that a failure occurred in the achievement of goal G in

scheme S.

5.3 Implementation 93

released(S,G) denoting that goal G has been released.

thrown(S,E,Ag,Args) denoting that an exception has been thrown by agent Ag,

following the exception spec E. Args is a list of arguments, i.e., a set of

ground predicates having the same structures of the arguments specified with

exceptionArgument(E,ArgFunctor,ArgArity) for exception E.

The following excerpt of code shows the normative facts resulting from the transla-

tion of the recovery strategy specified in Listing 5.3.

1 recoveryStrategy (rec1).

2
3 notificationPolicy (np1 ,(scheme_id (S) & failed (S, parseAmount))).

4
5 handlingPolicy (hp1 ,true).

6
7 strategy_policy (rec1 ,np1).

8 strategy_policy (rec1 ,hp1).

9
10 exceptionSpec (nan).

11
12 exceptionArgument (nan , index (Arg0)).

13
14 policy_exceptionSpec (np1 ,nan).

15
16 policy_goal (np1 , throwNan).

17 policy_goal (hp1 , recoverFromNan).

Listing 5.14: Recovery strategy for not a number translated in NOPL.

Whilst normative facts are deduced specifically on the basis each functional speci-

fication or added dynamically, rules and norms are general, and applicable to any

scheme instance.

Rules. Rules, in particular, allow to define when to enable throwing and catching

goals on the basis of the policy they belong to.

For throwing goals we have defined the following rule.

1 enabled (S,TG) :-

2 policy_goal (P,TG) &

3 notificationPolicy (P, Condition) &

4 Condition &

5 goal(_, TG , Dep , _, NP , _) & NP \== 0 &

94 Chapter 5 Case Study: the JaCaMo Framework

6 ((Dep = dep(or ,PCG) & (any_satisfied (S,PCG) | all_released (S,PCG))) |

7 (Dep = dep(and ,PCG) & all_satisfied_released (S,PCG))

8).

Listing 5.15: NOPL rule which enables throwing goals.

A throwing goal TG must be enabled as soon as the Condition defined for the policy

it belongs to holds. Since a throwing goal can be complex, encompassing multiple

sub-goals, its preconditions must be satisfied (or released) accordingly.

For catching goals the following rule applies.

1 enabled (S,CG) :-

2 policy_goal (HP ,CG) &

3 handlingPolicy (HP , Condition) &

4 Condition &

5 recoveryStrategy (ST) &

6 strategy_policy (ST ,HP) &

7 strategy_policy (ST ,NPol) &

8 policy_exceptionSpec (NPol ,E) &

9 thrown (S,E,_,_) &

10 policy_goal (NPol ,TG) &

11 satisfied (S,TG) &

12 goal(_, CG , Dep , _, NP , _) & NP \== 0 &

13 ((Dep = dep(or ,PCG) & (any_satisfied (S,PCG) | all_released (S,PCG))) |

14 (Dep = dep(and ,PCG) & all_satisfied_released (S,PCG))

15).

Listing 5.16: NOPL rule which enables catching goals.

Similarly to throwing goals, a catching goal is enabled if the condition specified in

the policy it belongs to holds and if the precondition goals are satisfied. However,

for catching goals this is not enough. We additionally require that an exception has

actually been thrown (see Line 9). Such exception must follow the specification

given by the notification policy belonging to the same strategy (Lines 5-8). Moreover,

the corresponding throwing goal must be satisfied (Line 11).

In this way, we ensure that the agent(s) that will be in charge of handling the

exception, to whom the catching goal is assigned, will be able to take advantage of

the information provided upon the exception throwing.

5.3 Implementation 95

Norms. Agents are asked to pursue throwing and catching goals by means of the

standard built-in norm for goal achievement, reported in Listing 5.17.

1 // agents are obliged to fulfill their enabled goals

2 norm ngoal :

3 committed (A,M,S) & mission_goal (M,G) &

4 ((goal(_,G,_, achievement ,_,D) & What = satisfied (S,G)) |

5 (goal(_,G,_, performance ,_,D) & What = done(S,G,A))) &

6 well_formed (S) &

7 not satisfied (S,G) &

8 not failed (_,G) &

9 not released (_,G) &

10 not super_satisfied (S,G)

11 -> obligation (A ,(enabled (S,G) & not failed (S,G)),What ,‘now ‘ + D).

Listing 5.17: NOPL norm issuing obligations to achieve goals.

We slightly modified the norm in order to avoid the issuing of obligations concerning

goals marked as failed or released (Lines 8-9).

We then added some regimented norms to ensure some properties. First of all, we

want to avoid that agents can signal as failed goals that are not enabled, yet. The

following norm serves the purpose.

1 norm fail_not_enabled_goal :

2 failed (S,G) &

3 mission_goal (M,G) &

4 not mission_accomplished (S,M) &

5 not enabled (S,G)

6 -> fail(fail_not_enabled_goal (S,G)).

Listing 5.18: NOPL norm regimenting goal failure.

The following norm, in turn, ensures that exceptions can be thrown only by following

a well-defined exception spec.

1 norm exc_unknown :

2 thrown (S,E,Ag ,Args) &

3 not exceptionSpec (E)

4 -> fail(exc_unknown (S,E,Ag)).

Listing 5.19: NOPL norm regimenting the throwing of unknown exceptions.

We also would like exceptions to be thrown only when a perturbation actually occurs

and not arbitrarily by the agents. In other words, we must ensure that an exception

can only be thrown if the condition of the corresponding notification policy holds.

96 Chapter 5 Case Study: the JaCaMo Framework

1 norm exc_condition_not_holding :

2 thrown (S,E,Ag ,Args) &

3 exceptionSpec (E) &

4 policy_exceptionSpec (NP ,E) &

5 notificationPolicy (NP , Condition) &

6 policy_goal (NP ,TG) &

7 not (Condition | satisfied (S,TG))

8 -> fail(exc_condition_not_holding (S,E,Ag , Condition)).

Listing 5.20: NOPL norm regimenting exception throwing conditions.

It’s worth noting that we allow the condition not to hold if the throwing goal has

been already satisfied (Line 7). The rationale is that, after a successful handling of

the exception the critical condition will likely stop holding. Nonetheless the fact

thrown(S,E,Ag,Args), together with satisfied(S,TG), keeps track of the fact that

an exceptional situation occurred (and has been handled).

Thanks to missions, a developer can identify at design time the classes of agents

(i.e., their roles) which will be responsible for throwing exceptions, when needed. In

this way, we ensure that the agents will likely be provided with the right capabilities

(expertise, opportunity, knowledge, etc.) and powers, within the organizational

scope, to provide the needed feedback. For the very same reason, it is important

to ensure that only these designated agents can throw exceptions. To this end we

defined the following norm.

1 norm exc_agent_not_allowed :

2 thrown (S,E,Ag ,Args) &

3 exceptionSpec (E) &

4 mission_goal (M,TG) &

5 policy_exceptionSpec (NP ,E) &

6 policy_goal (NP ,TG) &

7 not committed (Ag ,M,S)

8 -> fail(exc_agent_not_allowed (S,E,Ag)).

Listing 5.21: NOPL norm regulating agents allowed to throw exceptions.

The norm inhibits the throwing of exceptions by agents not committed to the mission

encompassing the corresponding throwing goal.

At the same time, the entitled agents, should actually provide the requested in-

formation to fulfill their responsibility. In other words, a throwing goal can be

5.3 Implementation 97

marked as achieved only if the corresponding exception has actually been thrown

beforehand.

1 norm ach_thr_goal_exc_not_thrown :

2 done(S,TG ,Ag ,Args) &

3 exceptionSpec (E) &

4 policy_exceptionSpec (NP ,E) &

5 policy_goal (NP ,TG) &

6 not super_goal (SG ,TG) &

7 not thrown (S,E,_,_)

8 -> fail(ach_thr_goal_exc_not_thrown (S,G,E,Ag)).

Listing 5.22: NOPL norm regulating the achievement of throwing goals.

Since throwing goals can be complex, encompassing multiple sub-goals, the norm

requires the exception to be thrown before the achievement of the root goal (see

Line 6).

Finally, the last three norms allow to ensure that the arguments provided by the

agents while throwing an exception follow the specification. More specifically, the

following norm ensures that the arguments of a thrown(S,E,Ag,Args) predicate

are ground predicates, i.e., they don’t contain variables.

1 norm exc_arg_not_ground :

2 thrown (S,E,Ag ,Args) &

3 exceptionSpec (E) &

4 . member (Arg ,Args) &

5 not . ground (Arg)

6 -> fail(exc_arg_not_ground (S,E,Arg)).

Listing 5.23: NOPL norm regimenting exception arguments groundness.

At the same time, it is important to ensure that all the relevant information is

provided, i.e., that all the required arguments are instantiated.

1 norm exc_arg_missing :

2 thrown (S,E,Ag ,Args) &

3 exceptionSpec (E) &

4 exceptionArgument (E, ArgFunctor , ArgArity) &

5 not (. member (Arg ,Args) &

6 Arg =..[ArgFunctor ,T,A] &

7 . length (T, ArgArity)

8)

9 -> fail(exc_arg_missing (S,E, ArgFunctor , ArgArity)).

Listing 5.24: NOPL norm regulating the absence of required exception arguments.

98 Chapter 5 Case Study: the JaCaMo Framework

The NOPL construct P=..[F,T,A], used at Line 6, allows to determine the functor F,

terms T, and eventually annotations A, of a predicate P. The norm triggers a failure if

at least one of the arguments specified for E does not unify with one of the terms in

the list Args of dynamic fact thrown(S,E,Ag,Args). Indeed, this means that some

of the information the agent was requested to provide is still missing.

The last norm regiments the prohibition, for agents, to include in the throwing of an

exception with undesired arguments.

1 norm exc_arg_unknown :

2 thrown (S,E,Ag ,Args) &

3 exceptionSpec (E) &

4 . member (Arg ,Args) &

5 Arg =..[ArgFunctor ,T,A] &

6 . length (T, ArgArity) &

7 not exceptionArgument (E, ArgFunctor , ArgArity)

8 -> fail(exc_arg_unknown (S,E,Arg)).

Listing 5.25: NOPL norm prohibiting undesired exception arguments.

The norm is triggered if one of the arguments in Args does not follow the argument

specification for E. The result is a failure in the exception throwing action.

5.3.3 Extending the Organizational Artifacts

As already explained, in JaCaMo the organization management infrastructure is

realized through a set of artifacts. Such artifacts allow agents to interact with the

organization, by perceiving its observable state and by executing some operations,

such as “commit to mission” or “goal x has been achieved” (Hübner et al., 2009).

JaCaMo’s NOPL interpreter relies on these artifacts, so, in order to introduce in

JaCaMo the exception handling mechanism explained above, it has been necessary

to extend one of them. Precisely, we enriched the SchemeBoard artifact for scheme

management with three additional operations:

goalFailed(G) to set an organizational goal G as failed. It adds to the normative

state the dynamic fact failed(S,G), where S is the scheme identifier.

5.3 Implementation 99

throwException(E,Args) to throw an exception E with a list of arguments Args.

It adds to the normative state the fact thrown(S,E,Ag,Args), where Ag is the

name of the agent executing the operation.

goalReleased(G) to release an organizational goal G. It adds to the normative state

the fact released(S,G).

The first operation, goalFailed(G), is to be used by the agents to proactively signal

the occurrence of a perturbation in the functioning of the organization, i.e., a failure

in the agents’ fulfillment of their responsibilities. Such a perturbation will trigger

the exception handling mechanism, possibly enabling a throwing goal on the basis

of the specified recovery strategies.

throwException(E,Args), in turn, allows the agents in charge of throwing the

exceptions to fulfill their responsibility and provide a feedback about the context

where exceptions occur. The exception arguments are made available to agents as

artifact’s observable properties having the shape exceptionArgument(E,Arg) (one

property for each argument).

Finally, goalReleased(G) serves as a means, available to the appointed agents, for

notifying to the organization that an exception has been handled. It’s worth noting

that releasing a goal is not the only way to handle a given exception. Resetting the

goal, for instance, could be an alternative, as well. This could be the result of the

execution of some actions restoring the possibility to achieve a failed goal. Under

this perspective, we let to the agents responsible for handling the choice of the best

actions to deal with exceptions.

100 Chapter 5 Case Study: the JaCaMo Framework

Experimentation and

Evaluation

6

Contents

6.1 Feature Overview: a Robust House Building 103

6.1.1 Handling Goal Failure Exceptions 104

6.1.2 Handling Goal Delay Exceptions 108

6.1.3 Exception Handling vs Message Passing 110

6.2 Leveraging Feedback: Bakery . 112

6.2.1 Support for Collective Exception Handling 115

6.2.2 Support for Concerted Exception Handling 118

6.3 Comparing Exception Handling in JaCaMo and BPMN 120

6.3.1 Translating BPMN Processes into JaCaMo Organizations 121

6.3.2 Error Events as Recovery Strategies: Incident Management122

6.3.3 Modeling Recurrent Exception Handling: Order Fulfillment130

6.3.4 Capturing Other Kinds of Events 132

6.4 Exception Handling in an Industrial Scenario: Production Cell . 133

6.4.1 Shortage of resources . 135

6.4.2 Motor Break . 137

6.4.3 Risk for Human Being 138

6.5 Adapting to Adverse Conditions: Parcel Delivery 139

6.6 Summary and Comparison with Previous Approaches 141

In this chapter we illustrate, evaluate and discuss the main features of the proposed

exception handling approach and infrastructure by means of a set of practical use

cases. They take inspiration from real-world scenarios and practices – coming from

101

the fields, e.g., of house constructions, business processes, smart factories, etc. – and

are modeled as multi-agent organizations.

To this end we show excerpts of implementations that leverage the version of JaCaMo

extended with the exception handling mechanism presented in the previous chapter.

In particular, the examples will help to evaluate the proposal w.r.t. to the following

features that, we believe, are important for any exception handling mechanism to be

suitable for MAS: autonomy preservation, decentralization, responsibility distribution,

availability of reliable feedback, and platform integration. More details are given in

Section 6.6.

In particular, Section 6.1 reviews the main features of the proposed mechanism. The

main benefits coming from its integration in the JaCaMo platform are highlighted.

The proposal is then compared with an approach based on simple message passing

to underline the need for an explicit responsibility distribution among the agents for

exception handling. The scenario illustrated in Section 6.2 highlights the benefits

coming from the availability of informed feedback to handle exceptions in a dis-

tributed and decentralized setting. At the same time, we discuss how the approach

allows to preserve the agents’ autonomy and how such an autonomy is an enabler

itself for effective exception handling. In Section 6.3, we compare the solution with

the exception handling mechanism adopted in BPMN (see Section 2.4). The main

aim of the section is to emphasize that multi-agent systems have the potential to

support the realization of complex business processes, but, to this end, they must

be equipped with the means to address exceptions, as effectively achieved by the

formalism. In Section 6.4, exception handling is put in place in an industrial scenario

where a production cell is modeled as a MAS. The scenario points out how our pro-

posal leverages the distributed and decentralized nature of agents in the exception

handling process, as well. Finally, the example presented in Section 6.5 shows how

the proposed approach enables dynamic improvements in the functioning of an

organization. Thanks to exception handling, agents can effectively adapt to adverse

contextual conditions, with straightforward benefits for the whole organization.

102 Chapter 6 Experimentation and Evaluation

house built

site
prepared

[1 week]

floors
laid

[4 days]

walls
built

[2 weeks]

roof
built

[4 days]

windows
fitted

[2 days]

doors
fitted

[2 days]

plumbing
installed

[6 days]

electrical
system
installed

[2 days]

exterior
painted
[1 week]

interior
painted
[4 days]

Figure 6.1: Functional decomposition of the organizational goal in the building-a-house
organization, as specified in (Boissier et al., 2013).

6.1 Feature Overview: a Robust House Building

As a first practical scenario, to review the main features of the mechanism, we rely

on the building-a-house example, originally introduced in (Boissier et al., 2013).

Here, an agent wants to build a house on a plot. To achieve the goal the companies,

it has contracted with, must coordinate and execute various tasks. The deployment

of an organization thus serves the purpose effectively and Figure 6.1 graphically

depicts a possible functional decomposition of the organizational goal. Sub-goals

must be achieved in sequence, from left to right. Sub-goals grouped under a double

horizontal line can be achieved in parallel. The structural specification, in turn,

defines a group which includes the following roles: house owner, site prep contractor,

bricklayer, roofer, windows fitter, door fitter, plumber, electrician, and painter. The

house owner agent will be in charge of the overall house construction, i.e., of the

root goal house_built, whilst each involved company, adopting the suitable role,

will be responsible for a leaf goal in the decomposition tree.

A construction scenario, like the one described above, is a very dynamic environment

where exceptional situations are likely to occur. As a consequence, robustness of the

organization coordinating the building of the house is important. Achievement of

the organizational goal involves the coordination of multiple companies executing

the various sub-goals, part of which can be executed in parallel, while part depends

6.1 Feature Overview: a Robust House Building 103

on others. Site preparation, e.g., must be completed before any other step. At the

same time, agents may fail to discharge their responsibilities for a wide number of

reasons and such failures could impact the organization as a whole. For instance,

should the site prep contractor agent in charge of site_prepared face a failure, the

whole house construction could not proceed. Depending on the reasons for a failure,

different corrective actions might have to be taken, as well.

Let us focus, in particular, on two kinds of exceptions which may occur: a failure

of goal site_prepared and a delay in the achievement of windows_fitted. The

former is proactively caused by the responsible agent by notifying the failure, while

the latter occurs as soon as the goal deadline for achievement is not respected.

6.1.1 Handling Goal Failure Exceptions

For what concerns the first exception, we can extend the functional specification of

the organization with the following recovery strategy, targeting the failure in the

achievement of site_prepared.

1 <recovery - strategy id =" rsSitePreparation ">

2 <notification - policy id =" npSitePreparation ">

3 <condition type =" goal - failure ">

4 <condition - argument id =" target " value =" site_prepared " />

5 </condition >

6 <exception -spec id =" site_preparation_exception ">

7 <exception - argument id =" errorCode " arity ="1" />

8 </exception -spec >

9 <goal id =" notify_site_preparation_problem " />

10 </ notification -policy >

11 <handling - policy id =" hpSitePreparation ">

12 <condition type =" always " />

13 <goal id =" handle_site_problem ">

14 <plan operator =" parallel ">

15 <goal id =" inspect_site " />

16 <goal id =" notify_affected_companies " />

17 </plan >

18 </goal >

19 </handling -policy >

20 </recovery -strategy >

Listing 6.1: Recovery strategy targeting a failure in site preparation in the building-a-house

scenario.

104 Chapter 6 Experimentation and Evaluation

house built

site

prepared
[1 week]

floors

laid
[4 days]

walls

built
[2 weeks]

roof

built
[4 days]

windows

fitted
[2 days]

doors

fitted
[2 days]

plumbing

installed
[6 days]

electrical

system

installed
[2 days]

exterior

painted
[1 week]

interior

painted
[4 days]

notify site

problem
[1 day]

inspect site
[3 days]

notify

affected

companies

goal-failure

site preparation exception
• errorCode

notification policy handling policy

site prep contractor

engineer

house owner

Figure 6.2: Functional decomposition of the building-a-house organizational goal extended
with the recovery strategy targeting the failure of site_prepared.

Notification policy npSitePreparation specifies that, should a goal failure con-

cerning site_prepared occur (see the condition at Lines 3-5), the throwing goal

notify_site_preparation_problem is to be enabled. Its purpose is to make the

agent responsible for it specify the reason for the failure, in order to exploit such infor-

mation for recovery. To this end, an exception spec site_preparation_exception

(Lines 6-8) specifying an errorCode argument is defined.

Handling policy hpSitePreparation, in turn, expresses what needs to be done to

solve the site preparation exception, once it has been raised and the failure reason

provided. In this case, the catching goal is composite (Lines 13-18): the site should

be inspected and, at the same time, the other companies involved in the house

construction notified. It’s worth noting that agents in charge of these goal will have

the possibility to leverage the information provided beforehand to achieve them.

Site inspection, e.g., will be performed in different ways in case the failure is due to

a flooding rather than to the finding of archaeological remains. Corrective actions

undertaken by the agents to recover from the situation will be different, as well.

Figure 6.2 illustrates the functional decomposition of the building-a-house organiza-

tional scheme, extended with the recovery strategy presented above. Agents, that

are responsible for some goals, are highlighted in red.

6.1 Feature Overview: a Robust House Building 105

Specifically, house owner has now the responsibility for goal notify_affected_

companies. An engineer, instead, is responsible for inspect_site: according to the

raised exception, the result of the inspection, and its expertise, the agent will deliber-

ate the most appropriate countermeasures. Finally, the site prep contractor, in charge

of site_prepared, is also responsible for raising the exception by accomplishing

goal notify_site_preparation_problem, when needed.

Having extended the organization specification with a recovery strategy for the even-

tual failure of site_prepared, we can now focus on agent programming. Listing 6.2

shows an excerpt of a possible implementation of the site prep contractor agent.

1 + obligation (Ag ,_,done(_, site_prepared ,Ag),_)

2 : . my_name (Ag)

3 <- ! site_prepared ;

4 goalAchieved (site_prepared).

5
6 +! site_prepared

7 <- prepareSite . // Simulate the action in the environment

8
9 -! site_prepared

10 <- goalFailed (site_prepared);

11 .fail.

12
13 + obligation (Ag ,_,done(_, notify_site_preparation_problem ,Ag),_)

14 : . my_name (Ag) &

15 // percepts encoding that the site is flooded

16 <- throwException (site_preparation_exception ,[errorCode (flooding)]);

17 goalAchieved (notify_site_preparation_problem).

Listing 6.2: Code of the site prep contractor agent, raising the site preparation

exception.

Notably, the agent discharges its responsibilities by way of two plans, reacting to two

obligations. The first one (Line 1) refers to the achievement of goal site_prepared.

The second one (Line 13) refers to the raising of an exception whenever goal

site_prepared fails. In other words, the first obligation is issued in relation to

the “standard” goal the agent is responsible for, whereas the second obligation is

issued in relation to a recovery strategy, again under the responsibility of the agent.

The obligation to achieve site_prepared is mapped onto an internal goal (Line 3).

Should, for any reason, the agent fail to achieve such goal, the contingency plan at

Line 9 would be triggered.

106 Chapter 6 Experimentation and Evaluation

The execution of the goalFailed operation, at Line 10, allows the agent to notify

the organization that something went wrong. The organization, in turn, activates the

exception handling mechanism, according to the recovery strategy described above,

by issuing an obligation to achieve notify_site_preparation_problem to the very

same agent. This obligation requests the agent to raise an exception and to provide

an error code, encoding the reason for the failure. The agent may be equipped with

multiple plans to perform this task. The plan at Line 13 is activated when the reason

of the failure amounts to a flooding. The exception is raised by the operation at

Line 16. In particular, the second parameter of this operation is the list of ground

predicates (i.e., the exception arguments), which must follow the structure specified

by the exception spec in the recovery strategy. In this case, the agent includes

predicate errorCode (of arity 1) with argument flooding. As already explained,

the exception arguments encode the local knowledge that is deemed relevant to

handle the exception, and that needs to flow from the agent, responsible for raising

the exception (holder of such knowledge), to the agent responsible for handling the

exception.

Having discussed how the exception is raised, we now consider how it is handled. In

our simple recovery strategy, part of the handling is to be performed by the engineer

agent. An excerpt of a possible implementation is shown in Listing 6.3, below.

1 + obligation (Ag ,_,done(_, inspect_site ,Ag),_)

2 . my_name (Ag) &

3 exceptionArgument (site_preparation_exception ,

4 failureReason (flooding))

5 <- performSiteAnalysis (Result);

6 fixFlooding (Result);

7 goalReleased (site_prepared);

8 goalAchieved (inspect_site).

9
10 + obligation (Ag ,_,done(_, inspect_site ,Ag),_)

11 . my_name (Ag) &

12 exceptionArgument (site_preparation_exception ,

13 failureReason (archaeologicalRemains))

14 <- delimitSite ;

15 carefullyRemoveRemains ;

16 resetGoal (site_prepared).

Listing 6.3: Code of the engineer agent in the building-a-house scenario.

6.1 Feature Overview: a Robust House Building 107

One main advantage of our proposed exception handling mechanism is that it allows

to conjugate two dimensions. On one hand, it gives the possibility to specify at an

organizational level that some exceptional situations ought to be treated in order to

ensure the right functioning of the organization. On the other hand, it preserves the

agents’ autonomy in choosing the best way to handle the exception, according to

their know-how (i.e., capabilities and knowledge).

Also in this case, we focus on the plans the agent uses to discharge its responsibilities.

Indeed, the agent in Listing 6.3 is equipped with two alternative plans to discharge

its responsibility to handle the exception, depending on the failure reason specified

together with the site_preparation_exception. The first plan, triggered when the

error code denotes a flooding, encompasses the performing of a site analysis (e.g.,

to estimate the damages) and then some fixes. In this case, goal site_prepared

is released (Line 7), so that after the fix the construction can proceed. If, instead,

the second plan is triggered, denoting the presence of archaeological remains, the

course of actions to undertake is different. In this case the site is firstly delimited,

then the remains are carefully removed, and finally goal site_prepared is reset, so

that another attempt can be made in the site preparation.

6.1.2 Handling Goal Delay Exceptions

Let us now illustrate how the exception handling mechanism allows to capture

also the second kind of exception that may occur during the house building, i.e., a

delay in the achievement of goal windows_fitted w.r.t. to the scheduled time of

two weeks. We can easily specify a recovery strategy to deal with the exception, as

reported in Listing 6.4.

1 <recovery - strategy id =" rsWindowDelay ">

2 <notification - policy id =" npWindowDelay ">

3 <condition type =" goal - delay ">

4 <condition - argument id =" target " value =" windows_fitted " />

5 </condition >

6 <exception -spec id =" windows_delay_exception ">

7 <exception - argument id =" weeksOfDelay " arity ="1" />

8 </exception -spec >

9 <goal id =" notify_windows_fitting_delay " />

108 Chapter 6 Experimentation and Evaluation

10 </ notification -policy >

11 <handling - policy id =" hpWindowDelay ">

12 <condition type =" custom ">

13 <condition - argument

14 id =" formula "

15 value =" thrown (_, windows_delay_exception ,_,Args)

16 & . member (weekOfDelay (D),Args) & D > ;= 2"

17 />

18 </condition >

19 <goal id =" handle_windows_fitting_delay " />

20 </handling -policy >

21 </recovery -strategy >

Listing 6.4: Recovery strategy targeting a delay in windows fitting in the building-a-house

scenario.

The notification policy inside the recovery strategy specifies an exception spec

windows_delay_exception with an argument weeksOfDelay. By this, we request

to the agent throwing the exception to provide an estimation of the expected weeks

of delay, in order to calibrate the handling actions accordingly.

Indeed, following the functional decomposition (Figure 6.1), goal windows_fitted

must be pursued in parallel with two other goals: roof_built and doors_fitted.

While the latter is to be achieved in two weeks, the former takes more time, with

a time to fulfill of four weeks. A designer can then define the recovery strategy in

a way that the handling policy is applied only if the estimated delay exceeds two

weeks. The idea beyond this is that, if the delay amounts to less than two weeks,

the subsequent goals in the scheme are not impacted, because they still depend on

roof_built, which takes four weeks to be achieved. In this particular case, even

if the exception occurs, we raise awareness about it, but no corrective action is

needed.

We can obtain the behavior described above by specifying a custom condition for the

handling policy included in the recovery strategy, as reported at Lines 12-18. The

condition is directly expressed as a NOPL formula in the condition argument9. As a

result, the handling policy is applied (and the catching goal is enabled) only if the

9Since in Moise the organizational specification is encoded in XML, some characters possibly
occurring in NOPL formulas (such as &, >, and <) need to be escaped.

6.1 Feature Overview: a Robust House Building 109

number of weeks of delay expressed as argument while throwing the exception is

greater than 2.

6.1.3 Exception Handling vs Message Passing

One might argue that robustness could be achieved in agent systems by simply

relying on inter-agent messages. Message passing, however, brings on the system

some substantial drawbacks. In first lieu, it strengthen agent coupling, as the

following example highlights. Listings 6.5 and 6.6 show an implementation of the

site prep contractor and engineer agents, respectively, where the exceptional situation

due to flooding is handled through message passing.

1 + obligation (Ag ,_,done(_, site_prepared ,Ag),_)

2 : . my_name (Ag)

3 <- ! site_prepared ;

4 goalAchieved (site_prepared).

5
6 +! site_prepared

7 <- prepareSite .

8
9 -! site_prepared

10 : group (G, house_group ,_) &

11 play(Eng ,engineer ,G) &

12 play(HouseOwner , house_owner ,G)

13 <- .send(Eng ,tell ,

14 exception (site_preparation_exception ,[errorCode (flooding)]));

15 .send(HouseOwner ,tell ,

16 exception (site_preparation_exception ,[errorCode (flooding)]));

17 .fail.

18
19 + handled (site_preparation_exception)

20 <- goalAchieved (site_prepared).

Listing 6.5: Code of the site prep contractor agent, with exception handling realized through

message passing.

The raising of an exception may be replaced by the sending of a message to notify

the occurrence of a failure, and the corresponding error code. The point is that,

since the responsibilities concerning the handling of such a situation are not clearly

distributed among the agents, site prep contractor might not even know to whom

such a message should be sent. Thus, in principle, such a notification should be

110 Chapter 6 Experimentation and Evaluation

broadcasted to all the agents. For the sake of simplicity, however, let us assume

that site prep contractor knows that engineer and house owner might be willing to be

notified about a failure in the preparation of the site. Thereby, in Listing 6.5, site

prep contractor sends them the same notification message (Lines 13-16). However,

by doing this, we increase the coupling between the involved agents because the

recipients of the message, as well as the shape of the message, are hard-coded inside

the agent itself.

More critically, the lack of an explicit distribution of responsibilities implies that

the the site prep contractor cannot have any rightful expectation about the behavior

of engineer upon reception of its message. In fact, the organization cannot issue

any obligation upon engineer; the agent might not even be equipped with the right

capabilities to handle the exception successfully.

At the same time, agent development cannot follow a uniform approach to address

the achievement of organizational goals and the handling of exceptions. Each excep-

tion must be addressed by defining ad hoc interaction protocols, whose specification

falls outside the scope of the organization. To draw an analogy, this message-based

solution bears similarities with the definition of functions, in programming lan-

guages, where a particular return value denotes a failure (e.g., -1 is the typical

failure value of Unix system calls). Of course, the implementation is possible, the

drawback is that since the semantics of the values that are returned is twofold, the

code will be burdened with checks (i.e., if statements) on the return value of every

critical function to determine whether the function did its job or not. The same

happens for agents, see for instance the code of engineer snipped in Listing 6.6.

1 + exception (site_preparation_exception ,Args)

2 : . member (errorCode (flooding),Args) &

3 group (G, house_group ,_) &

4 play(SPC , site_prep_contractor ,G)

5 <- performSiteAnalysis (Result);

6 fixFlooding (Result);

7 .send(SPC ,tell , handled (site_preparation_exception)).

8
9 + exception (site_preparation_exception ,Args)

10 : . member (errorCode (archaeologicalRemains),Args) &

11 group (G, house_group ,_) &

12 play(SPC , site_prep_contractor ,G)

6.1 Feature Overview: a Robust House Building 111

13 <- delimitSite ;

14 carefullyRemoveRemains ;

15 resetGoal (site_prepared).

Listing 6.6: Code of the engineer agent, with exception handling realized through message

passing.

These two plans are specifically devised to capture the message from site prep

contractor, and are not programmed by following the responsibilities of the agent

(i.e., the set of obligations it has to fulfill), but hard coded as “if”. Our mechanism,

instead, allows to program agents just by looking at their responsibilities, capturing

in a homogeneous way both the normal and exceptional behavior.

Moreover, since the exception handling is seamlessly integrated within the organiza-

tion management infrastructure, and the runtime behavior of JaCaMo’s normative

engine (which issues obligations) has not been substantially changed, exception

handling is delivered at no significant additional computational cost w.r.t. “standard”

JaCaMo organizations (i.e., without exception handling put in place).

6.2 Leveraging Feedback: Bakery

To further illustrate the flexibility of the proposed approach, let us now consider

another scenario. The aim of this example is to highlight the benefits of the avail-

ability of contextual feedback, coming from an informed source and in an agreed

format, to effectively handle exceptions in a distributed setting, where each agent

may have a different and partial visibility over the environment and over the ongoing

execution.

In a bakery, among the different products, customers can order cakes which are pro-

duced when requested. Cake production involves multiple steps: first the workspace

must be set up by gathering the ingredients and switching on the oven, then ingredi-

ents must mixed and finally the cake baked.

We can effectively model the bakery as a JaCaMo organization. Agents taking

part in the organization will play the following roles: customer, baker, supplier,

112 Chapter 6 Experimentation and Evaluation

have cake

provide
ingredients

switch on
oven

bake
cake

mix
ingredients

apprenticesupplier

baker

customer

Figure 6.3: Functional decomposition of the bakery organizational goal.

and apprentice. The cake production can be modeled as a social scheme to be

instantiated every time a cake is requested by a customer, as reported in Figure 6.3

and in Listing 6.7.

1 <scheme id =" cake_sch ">

2 <goal id =" haveCake ">

3 <plan operator =" sequence ">

4 <goal id =" workspaceSetup ">

5 <plan operator =" parallel ">

6 <goal id =" provideIngredients " />

7 <goal id =" switchOnOven " />

8 </plan >

9 </goal >

10 <goal id =" mixIngredients " />

11 <goal id =" bakeCake " />

12 </plan >

13 </goal >

14 <mission id =" mApprentice " min ="1" max ="1" >

15 <goal id =" switchOnOven " />

16 <goal id =" bakeCake " />

17 </mission >

18 <mission id =" mSupplier " min ="1" max ="1" >

19 <goal id =" provideIngredients " />

20 </mission >

21 <mission id =" mBaker " min ="1" max ="1" >

22 <goal id =" mixIngredients " />

23 </mission >

24 <mission id =" mCustomer " min ="1" max ="1" >

25 <goal id =" haveCake " />

26 </mission >

27 </scheme >

Listing 6.7: Social scheme for producing a cake in the bakery scenario.

While the customer will be in charge of the top-level goal haveCake, the baker will

have responsibility for the difficult part, namely mixing the ingredients wisely. The

6.2 Leveraging Feedback: Bakery 113

bakery supplier, in turn, will be responsible for providing the ingredients, and an

apprentice for the simpler tasks, i.e., switchOnOven and bakeCake. The missions

featured in the scheme specification encode this responsibility distribution.

We now show how our proposed exception handling mechanism enables a funda-

mental transfer of contextual information from the context in which an exception

occurs to the context in which it must be handled and that such transfer is of primary

importance for implementing a successful recovery.

Let us consider, as an illustration, an exceptional situation which is very likely to

occur in a real-world scenario, i.e., the unavailability of one or more ingredients. The

result would be an impossibility, for the supplier agent to achieve its assigned goal

provideIngredients. The recovery strategy in Listing 6.8 targets this eventuality.

1 <recovery - strategy id =" rsIngredients ">

2 <notification - policy id =" npIngredients ">

3 <condition type =" goal - failure ">

4 <condition - argument id =" target " value =" provideIngredients " />

5 </condition >

6 <exception -spec id =" ingredientsUnavailable ">

7 <exception - argument id =" missingIngredients " arity ="1" />

8 </exception -spec >

9 <goal id =" notifyIngredientsUnavailability " />

10 </ notification -policy >

11 <handling - policy id =" handlerIngredients ">

12 <condition type =" always " />

13 <goal id =" dealWithMissingIngredients " />

14 </handling -policy >

15 </recovery -strategy >

Listing 6.8: Recovery strategy targeting the ingredientsUnavailable exception in the

bakery organization.

The notification policy is applied as soon as a goal failure concerning provide

Ingredients is detected and requires (the supplier) to throw an ingredients

Unavailable exception, providing a list of missing ingredients as exception argu-

ment.

Leveraging this information, the baker agent can be developed so as to handle the

exception, e.g, by using some other ingredient available in the food storage, if any.

114 Chapter 6 Experimentation and Evaluation

For instance, should strawberries be unavailable, we might want the baker use

raspberries, if available. The plans below realizes such a behavior.

1 +! dealWithMissingIngredients

2 : exceptionThrown (_, ingredientsUnavailable ,_) &

3 exceptionArgument (_, ingredientsUnavailable , missingIngredients (I)) &

4 . member (strawberries ,I) &

5 available (raspberries)

6 <- println ("I’ll use raspberries instead of strawberries ");

7 takeFromStorage (raspberries);

8 goalReleased (provideIngredients).

Listing 6.9: Plans to handle an ingredientsUnavailable exception in the baker agent.

In other words, thanks to the feedback provided by the supplier (directly involved in

the exceptional situation), the baker can leverage the relevant information concern-

ing the exception (in this case the missing ingredient) and combine it with its local

knowledge (the food storage provision) in order to put in place the most suitable

actions to restore the normal execution of the social scheme.

6.2.1 Support for Collective Exception Handling

We recall that in JaCaMo multiple agents may play the same role. This feature,

combined with the exception handling mechanism, allows one to put in place

patterns of collective exception handling in which multiple agents may be required

to jointly raise or handle exceptions.

For instance, we may want to model that the bakery collaborates with multiple

suppliers. We will have multiple agents playing the supplier role. Each agent,

as a role player, will be then required, when needed, to provide its ingredients.

Should, for any reason, goal provideIngredients fail, all the supplier agents would

be required to achieve the throwing goal, thereby each one raising an exception.

Each agent will likely provide the list of missing ingredients according to its local

knowledge. This feature enables the gathering of feedback from multiple sources,

each one having a partial and peculiar perspective over the exception at hand.

The same holds for the exception handling phase. A given catching goal may be

assigned to multiple agents playing the same role. In this way, we can model the fact

6.2 Leveraging Feedback: Bakery 115

that a given exception, to be properly handled, requires the execution of the same

actions by multiple agents. Consider, for instance, an exception resulting from the

failure of goal switchOnOven and denoting a fire breakout. All the agents working

in the bakery should be asked to leave the room immediately and call the firemen.

This eventuality can be well modeled by introducing an additional role, e.g., worker,

generalizing both the baker and the apprentice. The following recovery strategy then

serves the purpose.

1 <recovery - strategy id =" rsOven ">

2 <notification - policy id =" np1">

3 <condition type =" goal - failure ">

4 <condition - argument id =" target " value =" switchOnOven " />

5 </condition >

6 <exception -spec id =" ovenBorken ">

7 <exception - argument id =" status " arity ="1" />

8 </exception -spec >

9 <goal id =" notifyIngredientsUnavailability " />

10 </ notification -policy >

11 <handling - policy id =" handlerFire ">

12 <condition type =" custom ">

13 <condition - argument id =" formula "

14 value =" thrown (_, ovenBroken ,_,Args) &

15 . member (status (fire),Args)" />

16 </condition >

17 <goal id =" evacuation ">

18 <plan operator =" parallel ">

19 <goal id =" leaveRoomImmediately " />

20 <goal id =" call911 " />

21 </plan >

22 </handling -policy >

23 <handling - policy id =" handlerHeat ">

24 <condition type =" custom ">

25 <condition - argument id =" formula "

26 value =" thrown (_, ovenBroken ,_,Args) &

27 . member (status (noHeat),Args)" />

28 </condition >

29 <goal id =" notifyTechSupport " />

30 </handling -policy >

31 </recovery -strategy >

Listing 6.10: Recovery strategy targeting the ovenBroken exception in the bakery organiza-

tion.

The strategy encompasses two handling policies, to be applied depending on the

outcome of the exception raising phase. In particular the first one targets a fire

caused by the oven malfunctioning. In this case, we can associate the responsibility

116 Chapter 6 Experimentation and Evaluation

of catching goals leaveRoomImmediately and call911 to the worker role. As a

result, the corresponding obligations will be issued towards all the role player

agents.

By defining multiple handling policies for a given exception, we can also model the

fact that the exception should be handled by different agents in different circum-

stances, as expressed by the following missions.

1 <mission id =" mWorker " ... >

2 <goal id =" leaveRoomImmediately " />

3 <goal id =" call911 " />

4 </mission >

5 <mission id =" mBaker " ... >

6 <goal id =" notifyTechSupport " />

7 </mission >

Listing 6.11: Missions for catching goals handling the ovenBroken exception in the bakery

organization.

Through norms, we can assign the first mission to all the workers and the second

one to the baker only. The actual handling will involve different agents depending

on which feedback is provided as exception argument and, consequently, which

policy is applied.

It’s worth noting that it is possible to specify complex courses of action to raise and

handle exceptions, too, and leverage the organizational infrastructure to coordinate

the different collaborating agents. Throwing goals and catching goals, like standard

goals, can be complex and encompass multiple sub-goals. The responsibility of such

sub-goals can be then distributed among different agents. This enables the use of

the normative system to model both the normal and exceptional behavior of the

system, uniformly.

We have already shown this mechanism in operation, for catching goals, in Sec-

tion 6.1.1. Indeed, in that case, exception handling involved the collaboration of an

engineer agent and of the house owner to carry out multiple tasks, concurrently. In

Listing 6.10, as well, catching goal evacuation encompasses multiple steps.

The same applies to throwing goals included in notification policies. For instance,

before throwing an exception, it could be necessary to gather some sensory data,

6.2 Leveraging Feedback: Bakery 117

elaborate it, and finally produce the feedback (i.e., the exception). In case of complex

throwing goals, we require that an exception compliant with the corresponding

exception spec is actually thrown by the responsible agents before the root of the

throwing goal is marked as achieved (see Listing 5.22).

6.2.2 Support for Concerted Exception Handling

Another interesting feature of the mechanism is that it allows to capture the compo-

sition of multiple exceptions to be handled jointly, in a similar way to what proposed

with the notion of concerted exception handling in SaGE (see Section 3.4). Let us

consider again a malfunction in the oven, causing the failure of goal switchOnOven.

While the two exceptions, related to the ingredients and the oven, may be han-

dled in isolation by the bakery staff, the failure of both provideIngredients and

switchOnOven may cause a concerted cakePreparationException, involving the

customer, too, in its handling. The recovery strategy in Listing 6.12 models this

possibility.

1 <recovery - strategy id =" rsConcerted ">

2 <notification - policy id ="..." >

3 <condition type =" custom ">

4 <condition - argument id =" formula "

5 value =" scheme_id (S) &

6 failed (S, provideIngredients) &

7 failed (S, switchOnOven)" />

8 </condition >

9 <exception -spec id =" cakePreparationException ">

10 <exception - argument id =" discountCode " arity ="1" />

11 </exception -spec >

12 <goal id =" notifyCakePreparationException " />

13 </ notification -policy >

14 <handling - policy id ="..." >

15 <condition type =" always " />

16 <goal id =" cancelOrder " />

17 </handling -policy >

18 </recovery -strategy >

Listing 6.12: Recovery strategy targeting the cakePreparationException in the bakery

organization.

The notification policy is triggered only when both goals provideIngredients and

switchOnOven are marked as failed. We can update the scheme missions in order to

118 Chapter 6 Experimentation and Evaluation

assign the responsibility for the throwing goal notifyCakePreparationException

to the baker agent and for the catching goal cancelOrder to the customer.

As a result, when the throwing goal is enabled, the baker is required to inform

the customer about the fact that cake preparation could not be completed. As a

compensation, a discount code for a subsequent purchase, which constitutes the

feedback, must be emitted (see Line 10). The concerted exception is finally handled

by the customer by canceling the order. Concretely, this may amount, e.g., to

releasing the root goal haveCake or even destroying the scheme instance.

Concerted exception handling is particularly useful to handle the failure of multiple

goals inside a choice. Consider, as an illustration, the following goal.

1 <goal id =" completePayment ">

2 <plan operator =" choice ">

3 <goal id =" payWithCard " />

4 <goal id =" payWithCash " />

5 </plan >

6 </goal >

Listing 6.13: Complex goal involving a choice.

A payment could be completed either by using a credit card or by cash. In this

case, one might want to put in place a recovery strategy to cancel the corresponding

order only if both payment attempts fail, i.e., concerting the handling of exceptions

coming from the failures of payWithCard and payWithCash.

The following recovery strategy captures well this eventuality.

1 <recovery - strategy id =" rsPayment ">

2 <notification - policy id ="..." >

3 <condition type =" custom ">

4 <condition - argument id =" formula " value =" scheme_id (S) &

5 failed (S, payWIthCard) &

6 failed (S, payWithCash)" />

7 </condition >

8 ...

9 </ notification -policy >

10 <handling - policy id ="..." >

11 <condition type ="..." />

12 <goal id =" cancelOrder " />

13 </handling -policy >

14 </recovery -strategy >

Listing 6.14: Recovery strategy for concerted exception.

6.2 Leveraging Feedback: Bakery 119

6.3 Comparing Exception Handling in JaCaMo and BPMN

In Section 2.4 we introduced Business Processes. BPs realize a business goal by

coordinating the tasks undertaken by multiple interacting parties. Given such a

distributed nature, multi-agent organizations are a promising paradigm for con-

ceptualizing and implementing them. In order to provide the right support to BPs,

however, MAOs must be equipped with a systematic way to model error events

denoting the impossibility to complete an activity, which, as explained, realize the

exception handling mechanism put in place by BPMN. In this section we show, by

illustrating two real-world use cases, how our proposed exception handling mech-

anism allows to effectively realize business processes encompassing exceptions in

JaCaMo.

Recalling Weske’s definition (Weske, 2007), a business process is “a set of activities

that are performed in coordination in an organizational and technical environment.

These activities jointly realize a business goal.” In general, such business goal is

achieved by breaking it up into sub-goals, which are distributed to a number of

actors. Each actor carries out part of the process, and depends on the collaboration

of others to perform its task. One limit of business processes is that they integrate,

at the same abstraction level, both the business logic and the interaction logic

(message passing). Multi-agent systems, and in particular models for multi-agent

organizations, are promising candidates to supply the right abstractions to keep

processes linked together in a way that allows modeling the overall system in terms

of goals rather than of messages.

The potential of multi-agent systems and organization for the realization of business

processes has been advocated in (Sabatucci and Cossentino, 2019; Cossentino et al.,

2020; Cossentino et al., 2021), as well. The authors propose a tool for the auto-

matic generation ofMoise organizations from the BPMN specification of business

processes, in the context of dynamic workflows. The approach is complementary to

ours and can pave the way to a fruitful concrete application of an agent-oriented

approach to support the functioning of modern enterprises.

120 Chapter 6 Experimentation and Evaluation

6.3.1 Translating BPMN Processes into JaCaMo Organizations

When implementing a business process as a JaCaMo organization, a designer has

to be aware of a substantial difference between the two underlying paradigms. A

business process describes an activity flow where choices, upon alternative execution

branches, depend on the outcome of the activities performed that far. Instead, in

JaCaMo each organization generally has a complex goal, whose structure is provided

as a functional decomposition into sub-goals. The functional decomposition is used

to track and guide the execution, understanding when a sub-goal is to be pursued

and emitting the corresponding obligation.

The implementation of business processes through JaCaMo organizations, thus,

requires some special treatment, especially for what concerns the BPMN gateways,

where exclusive choices upon data are taken. Specifically, we capture these gateways

and their alternative branches as special goals within the functional decomposition.

Considering a choice, the goals amounting to the various alternatives are mutually

exclusive: the achievement of one of such alternative goals determines a specific

execution path that constrains the evolution of the remainder of the social scheme.

This stratagem allows incorporating, at least in part, within a functional decomposi-

tion the execution flow based on data. A dedicated manager agent will be in charge

of satisfying the obligations issued upon such special goals.

Having this in mind, the following steps provide a guideline to map a number of

interacting business processes into a JaCaMo organization.

1. For each process, a corresponding manager role in the organization is defined.

The agent(s) playing this role will have to decide on the alternative branches

to choose in the process execution;

2. For all the activities in a process, suitable worker roles in the organization are

defined. These roles will be played by the agents in charge of executing the

activities;

3. For each process:

6.3 Comparing Exception Handling in JaCaMo and BPMN 121

• A group collecting the manager and all the workers involved in the

process is defined;

• A social scheme is created to organize the activities as a goal decomposi-

tion tree10. Corresponding missions are defined, to be assigned to roles

of the group in charge of the process by defining suitable norms;

4. For each set of activities to be executed in sequence, the corresponding goals

are added to the social scheme by means of the “sequence” operator;

5. For each set of activities to be executed without strict ordering, the corre-

sponding goals are added to the social scheme by means of the “parallel”

operator;

6. If a choice is present inside a process (either an ‘or’ or ‘exclusive or’ gateway),

a corresponding goal is added to the social scheme by means of the “choice”

operator. Each sub-goal represents a possible course of action (alternative

branch). Every alternative in the choice should include a special goal, encoding

the chosen path to be assigned to the process manager. Depending on which

goal will be achieved by the manager, the execution will follow a branch or

another;

7. If a process sends a message that makes another process start, the message

should be sent to the process manager, which, as a consequence, will instantiate

the social scheme corresponding to the process.

6.3.2 Error Events as Recovery Strategies: Incident Management

The incident management case (Object Management Group, 2021), in Figure 6.4,

that we use as a first running example, models the interaction between a customer

and a company for the management of a problem that was reported by the customer.

It involves several interacting processes. The Customer reports the problem to a

Key Account Manager who, based on its experience, can either solve the problem

10Here, we restrict our attention to processes that do not include loops; otherwise it would not be
possible to express them as decomposition trees.

122 Chapter 6 Experimentation and Evaluation

Figure 6.4: The incident management BPMN diagram enriched with exception management.
The exceptional flow is highlighted in red.

6.3 Comparing Exception Handling in JaCaMo and BPMN 123

directly or ask for the intervention of a First Level Support process. The problem

can, then, be recursively treated by different support levels until, in the worst case,

it is reported to the Software Developer. Here, the business aim of the process, i.e.,

to solve the reported problem, is decomposed and distributed over up to five BPMN

processes, whose execution requires interaction and coordination – realized in this

case through message exchange.

As Figure 6.4 highlights (in red), the case includes treatment of exceptional situations

in all of the involved processes. For instance, the Examine Problem activity in

the Software Developer process might trigger an error event, causing the Handle

Developer Exception activity to be executed. As a result, the exception is then

propagated upwards through message passing, possibly causing the occurrence (and

handling) of additional exceptions. The reception of the failure message sent by

the Developer, in fact, will likely cause the Ask Developer activity in the Second

Level Support process to fail, as well, triggering a further exception. Exceptions

are propagated in a uniform way upwards until the customer is notified about the

impossibility to solve the problem and the support request is canceled.

The scenario also includes a set of timeout events, which, as we will see, can be well

modeled as deadline expiration exceptions with our exception handling approach.

For instance, activity Provide Feedback for 2nd Level Support encompasses a

timeout event triggering a dedicated activity to handle the delay.

Let us now explain how the incident management scenario can be mapped into a

JaCaMo organization by applying the steps above. For the sake of simplicity, let us

consider the Key Account Manager process. For the other processes we follow a

similar approach. First, we introduce a manager role am and, for each activity in the

process, we define a corresponding worker. aw1, for instance, will be in charge of

Get Problem Description, aw2 will be in charge of Explain Solution, and so on.

As a further step we define a Key Account group collecting am and all of its workers.

At the beginning of the execution, the customer agent will send a message to am

reporting the problem. As a consequence, the agent playing role am will instantiate

a scheme that will be assigned to this group and will encompass the overall Key

124 Chapter 6 Experimentation and Evaluation

root_account_manager

get_description

can_handle

cannot_handle ask_1st_level_support

explain_solution

am

aw1

aw2

aw3

Figure 6.5: Social scheme realizing the Key Account Manager process.

Account Manager process. The root goal of such scheme will be assigned to am

that, in order to satisfy it, will have to manage the successful execution of the social

scheme. am will be in charge of the goals introduced to determine which branch of

a given gateway to follow, as well (in this case can_handle and cannot_handle).

Figure 6.5 shows the scheme available for instantiation to am that represents the

possible courses of actions during the execution of the Key Account Manager process.

Goals including a choice are grouped under a single horizontal line. The Figure also

shows which agents such goals are assigned to (through missions and norms).

The scheme is to be instantiated as soon as a problem to be solved is reported. As a

consequence, the obligation to achieve goal get_description will be issued to the

corresponding worker aw1. After the successful achievement of get_description,

two obligations under a choice will be issued towards am: the former related to

the can_handle goal and the latter to cannot_handle. Depending on the result

of the previous activity (i.e., whether the problem requires further support or can

be handled at that level), am will decide to achieve either one of the two goals,

the choice made by am thus constrains the subsequent obligations that will be

generated. In the former case, the normative system will simply issue the obligation

to explain_solution, while in the latter it will issue the obligation to ask support

to the first level.

6.3 Comparing Exception Handling in JaCaMo and BPMN 125

In the second case, according to the BPMN diagram, again two options are available.

If an answer is received from the first level support, the solution has to be explained,

as well. On the contrary, if a feedback is not received after one day, causing a timeout,

an invitation to recall should be sent to the customer. Similarly, the customer request

must be canceled if an exception is propagated from the following support level. In

the following, we will see how both eventualities can be captured through exception

handling.

As said before, the request for support from the first level is concretely realized

by the responsible worker by instantiating the scheme corresponding to the First

Level Support process. The very same agent, in this second scheme, will play the

manager role. The scheme will then progress in a similar way as for the Key Account

Manager.

Let us suppose that the problem at hand requires the propagation of the support

request down until the Developer process. Listing 6.15 shows an excerpt of the

scheme specification realizing such process.

1 <scheme id =" scheme_developer ">

2 <goal id =" root_developer ">

3 <plan operator =" sequence ">

4 <goal id =" examine_problem " />

5 <goal id =" provide_feedback_for_2nd_level_support " ttf ="1 day "/>

6 </plan >

7 </goal >

8 <recovery - strategy id =" rsDeveloper1 ">

9 <notification - policy id =" npDeveloper1 ">

10 <condition type =" goal - failure ">

11 <condition - argument id =" target " value =" examine_problem " />

12 </condition >

13 <exception -spec id =" developer_exception ">

14 <exception - argument id =" warrantyStatus " arity ="1" />

15 </exception -spec >

16 <goal id =" raise_developer_exception " />

17 </ notification -policy >

18 <handling - policy id =" hpDeveloper1 ">

19 <condition type =" always " />

20 <goal id =" handle_developer_exception " />

21 </handling -policy >

22 </recovery -strategy >

23 <recovery - strategy id =" rsDeveloper2 ">

24 <notification - policy id =" npDeveloper2 ">

25 <condition type =" goal -ttf - expiration ">

126 Chapter 6 Experimentation and Evaluation

26 <condition - argument id =" target "

27 value =" provide_feedback_for_2nd_level_support " />

28 </condition >

29 <exception -spec id =" developer_feedback_delay ">

30 <exception - argument id =" reason " arity ="1" />

31 </exception -spec >

32 <goal id =" raise_developer_feedback_delay " />

33 </ notification -policy >

34 <handling - policy id =" hpDeveloper2 ">

35 <condition type =" always " />

36 <goal id =" handle_developer_feedback_delay " />

37 </handling -policy >

38 </recovery -strategy >

39 ...

40 </scheme >

Listing 6.15: Social scheme realizing the Software Developer process.

The scheme foresees two recovery strategies, allowing us to effectively model both

the error event possibly occurring in activity Examine Problem and the timeout

event in activity Provide Feedback for 2nd Level Support. The first strategy,

indeed, is to be activated when a failure occurs involving goal examine_problem,

which reifies the same name activity in BPMN and its associated error event. The

second one, in turn, is applied when a delay (bringing to a deadline expiration)

occurs in the achievement of goal provide_feedback_for_2nd_level_support,

modeling the timeout of the corresponding activity.

Listings 6.16 and 6.17 show the code of the two worker agents, that are responsible,

respectively for goals examine_problem and provide_feedback_for_2nd_level_

support, and for possibly throwing the related exceptions.

1 + obligation (Ag ,_,done(_, examine_problem ,Ag),_)

2 : . my_name (Ag)

3 <- ! examine_problem ; // set speed to 70%

4 goalAchieved (examine_problem).

5
6 +! examine_problem

7 <- // check warranty , problem description , manual , ...

8
9 -! examine_problem

10 <- goalFailed (examine_problem);

11 .fail.

12
13 + obligation (Ag ,_,done(_, raise_developer_exception ,Ag),_)

14 : warrantyStatus (S)

6.3 Comparing Exception Handling in JaCaMo and BPMN 127

15 <- throwException (developer_exception ,[warrantyStatus (S)]);

16 goalAchieved (raise_developer_exception).

Listing 6.16: Code of the first worker in the incident management scenario.

1 + obligation (Ag ,_,done(_, provide_feedback_for_2nd_level_support ,Ag),_)

2 : . my_name (Ag)

3 <- ...

4
5 + obligation (Ag ,_,done(_, raise_developer_feedback_delay ,Ag),_)

6 <- throwException (developer_feedback_delay ,[reason (...)]);

7 goalAchieved (raise_developer_feedback_delay).

Listing 6.17: Code of the second worker in the incident management scenario.

Both exceptions, amounting to the error and timeout events, are modeled uniformly,

by issuing an obligation to achieve the corresponding throwing goal towards the

responsible agent (see the last plans in the agents’ code). The only difference

is that for what concerns the error event, the exception is modeled as a goal

failure, thereby requiring an explicit execution of the goalFailed operation by

the first worker (see Line 10 in Listing 6.16). In the second case, conversely, the

exception is modeled as a goal delay, not requiring any explicit action by the agent.

The obligation concerning the throwing goal is issued as soon as the deadline

of goal provide_feedback_for_2nd_level_support expires. The two exception

specifications encompasses two exception arguments, the warranty status in the

former case, and a reason for the delay in the latter.

Listing 6.18, finally shows a piece of code of the agent playing the manager role

in the scheme. We recall that the very same agent is the one that is responsible

for ask_developer in the Second Level Support process scheme. The instantiation

of the Developer scheme by the agent concretely realizes the support request, as

illustrated before with the Key Account Manager. In other words, the worker in

charge of ask_developer leverages the Developer scheme (and its coordinated

execution) as a tool to successfully complete its own activity.

1 + obligation (Ag ,_,done(_, ask_developer ,Ag),_)

2 : . my_name (Ag) & ...

3 <- createScheme (_, scheme_developer ,_);

4 ...

5

128 Chapter 6 Experimentation and Evaluation

6 + feedback (F)

7 <- goalAchieved (ask_developer).

8
9 + obligation (Ag ,_,done(_, handle_developer_exception ,Ag),_)

10 : . my_name (Ag)

11 <- goalFailed (ask_developer);

12 goalReleased (root_developer);

13 goalAchieved (handle_developer_exception).

14
15 + obligation (Ag ,_,done(_, handle_developer_feedback_delay ,Ag),_)

16 : . my_name (Ag)

17 <- goalFailed (ask_developer);

18 goalReleased (root_developer);

19 goalAchieved (handle_developer_feedback_delay).

20
21 + obligation (Ag ,_,done(_, raise_2nd_level_support_exception ,Ag),_)

22 : . my_name (Ag)

23 <- ...

24
25 ...

Listing 6.18: Code of the developer manager agent in the incident management scenario.

The first plan realizes activity Ask Developer and encompasses the scheme instanti-

ation (see Line 3). The goal is marked as achieved as soon as a feedback is received

from the developer layer, as a result of the second plan.

The third and fourth plans, at Lines 9 and 15 realize the handling of the two

exceptions which could be thrown in the Developer process. Here, both exceptions

are treated in the same way, causing the failure of activity Ask Developer. For this

reason the corresponding goal is marked as failed. In this way, the exception is

propagated from the Developer process to the Second Level Support, because the

failure will likely activate an additional recovery strategy in such scheme, recursively

requiring the throwing of a further exception towards the first level of support. The

last plan, at Line 21 realizes this behavior.

In short, should an exception occur at any level of support, it will be in the end

propagated upwards until it will reach the agent managing the Key Account Manager

scheme, which will finally cancel the support request from the customer of invite it

to recall, according to the recovery strategies defined for the given scheme.

6.3 Comparing Exception Handling in JaCaMo and BPMN 129

Buying at Amazon Collaboration

Am
az

on

Pi
ck

er

Picker

Receive Order

Collect Items Place in Bin

Pa
ck

ag
er

Packager

Receive and
Package

Items
Send to

Carrier Dock

Cu
st

om
er

Customer

Add Items to
Cart

Checkout

Pay Order

Send Order

Retry

Receive Items

Browse
Products

on Amazon

Request
refund

Cancel Order

Cr
ed

it
Ca

rd
Co

m
pa

ny

Take
Payment

Receive Credit
Card Information Send Result

Ca
rr

ie
r

Deliver ItemsLoad Truck

Pick Items

Notify
customer

Send Credit Card Information

Figure 6.6: The Amazon order fulfillment BPMN diagram.

place order

browse
products

add
items checkout

pay
order

send
order

receive
items

Figure 6.7: The Customer process organizational scheme in the Amazon order fulfillment
scenario.

6.3.3 Modeling Recurrent Exception Handling: Order Fulfillment

Another well-known BPMN use case, inspired from the real world, is the Amazon

order fulfillment collaboration (Object Management Group, 2021), Figure 6.6. The

business goal of the process is to complete an online purchase and it is decom-

posed into four interacting processes, each one modeling a specific aspect of the

purchase.

As in the previous case, multi-organizations can provide a good computational

support for its realization. The case can be effectively modeled as a a JaCaMo

organization, in a way similar to what done for the incident management. Each

process can be modeled as a social scheme in which agents carry out goals amounting

to process activities. Also in this case, some processes encompass exceptions, which

130 Chapter 6 Experimentation and Evaluation

have to be addressed. Figure 6.7 shows the social scheme realizing the Customer

process, while Listing 6.19 shows the code of the recovery strategies targeting the

three exceptions possibly occurring in the process.

1 <recovery - strategy id =" rsPay ">

2 <notification - policy id =" npPay ">

3 <condition type =" goal - failure ">

4 <condition - argument id =" target " value =" payOrder " />

5 </condition >

6 <exception -spec id =" paymentRefused ">

7 <exception - argument id =" balance " arity ="1" />

8 </exception -spec >

9 <goal id =" raisePaymentRefused " />

10 </ notification -policy >

11 <handling - policy id =" hpPay ">

12 <condition type =" always "/>

13 <goal id =" retry " />

14 </handling -policy >

15 </recovery -strategy >

16 <recovery - strategy id =" rsRetry ">

17 <notification - policy id =" npRetry ">

18 <condition type =" goal - failure ">

19 <condition - argument id =" target " value =" retry " />

20 </condition >

21 <exception -spec id =" checkoutFailed " />

22 <goal id =" raiseCheckoutFailed " />

23 </ notification -policy >

24 <handling - policy id =" hpRetry ">

25 <condition type =" always "/>

26 <goal id =" cancelOrder " />

27 </handling -policy >

28 </recovery -strategy >

29 <recovery - strategy id =" rsReceive ">

30 <notification - policy id =" npReceive ">

31 <condition type =" goal - failure ">

32 <condition - argument id =" target " value =" receiveItems " />

33 </condition >

34 <exception -spec id =" itemsNotReceived " />

35 <goal id =" raiseItemsNotReceived " />

36 </ notification -policy >

37 <handling - policy id =" hpReceive ">

38 <condition type =" always "/>

39 <goal id =" requestRefund " />

40 </handling -policy >

41 </recovery -strategy >

Listing 6.19: Recovery strategies for the Customer process in the Amazon order fulfillment

scenario.

6.3 Comparing Exception Handling in JaCaMo and BPMN 131

It’s worth noting that our approach allows modeling in a straightforward way

also recurrent exceptions, i.e., exceptions which are thrown during the handling

of a previously thrown exception. Consider, for instance, activity Pay Order; an

exception could occur during its execution, triggering activity Retry. This second

activity can trigger an exception itself, causing the failure of the expanded subprocess

Checkout, and triggering a further activity for handling it, Cancel Order.

This pattern is well captured by the first two recovery strategies in Listing 6.19. The

first one, in particular addresses the failure of the organizational goal payOrder

which reifies activity Pay Order, and encompasses a catching goal retry. Such goal,

as any other, may fail, causing the occurrence of an additional exception, that is

addressed by the second recovery strategy. Indeed, here the condition triggering

the notification policy is exactly a failure of goal retry and the handling is realized

through goal cancelOrder.

This approach has analogies with the propagation of an exception along the call stack

in programming languages, or with the escalate directive in Akka. In programming

languages, it’s the call stack that defines the scope within which the information

concerning an exception must be propagated. The supervision hierarchy in the actor

model serves the same purpose. In our approach, in turn, the responsibilities induced

by recovery strategies shape the channel through which the relevant information

concerning the exception can flow from one agent to another.

6.3.4 Capturing Other Kinds of Events

As a remark, we highlight that our approach can be easily extended to support the

modeling, besides error and timeout events, of other kinds of BPMN events, such as

signals. A signal, similarly to an error, may be thrown during the execution of an

activity and trigger, as a result, the execution of further activities (e.g., they may

start an additional process). The main difference is that, while an error denotes the

failure of an activity, breaking the normal flow in the execution of the process, a

132 Chapter 6 Experimentation and Evaluation

Depot Belt

Elevating Rotary Table

Feed Belt

Robot
Arm 2

Press

Arm 1

Figure 6.8: Industrial production cell.

signal does not interrupt the normal execution of the process, which continues after

the signal is thrown.

To this end, a designer may define custom conditions for triggering notification and

handling policies. Such conditions would realize a conceptual mapping between

some relevant organizational states and the occurrence of signal events. Recovery

strategies encompassing these conditions, would then be applied when such events

occur and would specify the additional course of actions to be executed in response

to the given signal, without stopping the execution of the original social scheme.

The organizational infrastructure may be extended, as well – e.g., by extending the

goal lifecycle or by providing further organizational operations – to capture a wider

range of events.

6.4 Exception Handling in an Industrial Scenario: Production Cell

In the context of Industry 4.0 and Smart Factories, one main challenge is to conju-

gate an increasing level of autonomy of the components involved in the industrial

processes with interoperability and flexibility in order to build smart and adaptive

infrastructures, able to reconfigure upon the occurrence of perturbations. The aim

of this section is to show how exception handling grounded on responsibility can

bring concrete benefits in such a context. To this end, we consider an industrial

6.4 Exception Handling in an Industrial Scenario: Production Cell 133

producePlate

conveyPlateToTable

turnTableMoveUp
extendArm1

grabPlateFromPress

turnTableMoveDown

movePlateOnPress

releasePlateOnPress

movePressDownUp retract arm1

turnRobot

extendArm2

movePlateFromPressToBelt

retractArm2

conveyPlateToDeposit

feed belt

elevating rotary
table

robot

press

deposit belt

Figure 6.9: JaCaMo scheme for the production cell scenario.

scenario, inspired by the well-known and widely used production cell described in

(Lewerentz and Lindner, 1995).

A production cell is composed of five machines, see Figure 6.8: two conveyor belts

(a feed belt and a depot belt), an elevating rotary table, a press, and a rotary robot

equipped with two extensible arms. Each device has a set of sensors that provide

information about the environment and a set of actuators. The task of the cell is to

get a metal plate from a storage rack via the feed belt, transform it into a forged

plate by using the press, and return it to the deposit via the depot belt.

More in detail, the cell should perform the following steps for each metal plate that

is provided: 1) the feed belt conveys the plate from the storage rack to the elevating

rotary table, 2) the table rotates and lifts to the position where the robot can grab

the plate, 3) Arm 1 of the robot extends and picks the plate up, 4) the robot turns

and Arm 1 places the plate onto the press, 5) the press forges the plate while the

robot turns again, 6) Arm 2 picks up the forged plate and places it on the depot belt,

and 7) the depot belt carries the plate forward to the depot.

The described production cell can be well realized as a JaCaMo organization, where

each machine is operated by a different agent, and the organization coordinates

the production process. Figure 6.9 shows a possible JaCaMo scheme realizing

134 Chapter 6 Experimentation and Evaluation

the production of a metal plate. The figure also shows, in red, which agents are

responsible for which organizational goals.

6.4.1 Shortage of resources

The first exception that we consider in this scenario is a delay in the delivery of metal

plates. A reduction of the stockpile can be handled by slowing down the production.

The idea is that having the production cell come to a complete stop is expensive and

to be avoided when possible. To this aim, we can extend the scheme specification

with the following recovery strategy.

1 <recovery - strategy id =" strStock ">

2 <notification - policy id =" npStock ">

3 <condition type =" goal -ttf - expiration ">

4 <condition - argument id =" target " value =" conveyPlateToTable " />

5 </condition >

6 <exception -spec id =" exStock ">

7 <exception - argument id =" availablePlates " arity ="1" />

8 </exception -spec >

9 <goal id =" notifyRemainingStock " />

10 </ notification -policy >

11 <handling - policy id =" hpStock ">

12 <condition type =" custom ">

13 <condition - argument id =" formula "

14 value =" thrown (_,exStock ,_,Args) &

15 . member (availablePlates (N),Args)

16 & N < ;= 10" />

17 </condition >

18 <goal id =" slowDownProduction " />

19 </handling -policy >

20 </recovery -strategy >

Listing 6.20: Recovery strategy targeting a shortage of resources in the production cell

scenario.

The strategy models the need to throw an exception as soon as a delay is de-

tected in the achievement of goal conveyPlateToTable. In this case, the informa-

tion to be provided by the agent throwing the exception amounts to the number

of remaining plates. To this end, the notification policy encompasses the goal

notifyRemainingStock as throwing goal. The handling policy, encompassing

slowDownProduction as catching goal, is to be applied when the number of re-

maining plates is less than a certain amount.

6.4 Exception Handling in an Industrial Scenario: Production Cell 135

Let us assume the robot is in charge of supervising the production cell, and partici-

pates in the exception handling by taking the responsibility for requestRemaining-

Stock. We assume that the responsibility for notifyRemainingStock is taken by

the feed belt, since it has access to the local information, concerning the stockpile.

The following listing shows an excerpt of the feed belt’s code, concerning throwing

the exception.

1 + obligation (Ag ,_,done(_, conveyPlateToTable ,Ag),_)

2 : . my_name (Ag)

3 <- pickPlateFromStorage ; // action over the environment

4 startBelt (10); // start the belt for 10 seconds

5 stopBelt ;

6 goalAchieved (conveyPlateToTable).

7
8 + obligation (Ag ,_,done(_, notifyRemainingStock ,Ag),_)

9 : . my_name (Ag) &

10 inventory (I) & . member (plates (N),I)

11 <- throwException (exStock ,[availablePlates (N)]);

12 goalAchieved (notifyRemainingStock).

Listing 6.21: Implementation of the feed belt agent in the production cell scenario.

While the first plan allows the agent to fulfill its task of moving the plate on the belt

from the storage to the table, the second plan realizes the behavior allowing the

agent to fulfill its responsibility to throw the exStock exception.

The next listing, in turn, is an excerpt of a possible implementation of the robot.

1 + obligation (Ag ,_,done(_, slowDownProduction ,Ag),_)

2 : . my_name (Ag) &

3 exceptionThrown (_,exStock ,_) &

4 exceptionArgument (_,exStock , availablePlates (N)) & N >= 5

5 <- setProductionSpeed (0.7); // set speed to 70%

6 goalAchieved (slowDownProduction).

7
8 + obligation (Ag ,_,done(_, slowDownProduction ,Ag),_)

9 : . my_name (Ag) &

10 exceptionThrown (_,exStock ,_) &

11 exceptionArgument (_,exStock , availablePlates (N)) & N >= 2

12 <- setProductionSpeed (0.3);

13 goalAchieved (slowDownProduction).

14
15 + obligation (Ag ,_,done(_, slowDownProduction ,Ag),_)

16 : . my_name (Ag) &

17 exceptionThrown (_,exStock ,_) &

18 exceptionArgument (_,exStock , availablePlates (N)) & N <= 1

136 Chapter 6 Experimentation and Evaluation

19 <- stopProduction ;

20 goalAchieved (slowDownProduction).

Listing 6.22: Implementation of the robot agent in the production cell scenario.

As soon as the needed information concerning the stockpile is available, the robot

will be in condition to handle the situation by pursueing goal slowDownProduction.

The robot will, then, have the behavior of the production cell modulated according

to amount of plates that are left.

6.4.2 Motor Break

As a second reasonable source of exceptions, let us consider the elevating rotary table:

it is moved by two motors, one elevating and one rotating it. Should a malfunction

occur, causing the failure of goal turnTableMoveUp, it would be desirable for the

robot, depending on which motor stopped, to notify the personnel and, thus, quicken

the restoration. At the same time, the production cell should be paused. The

following recovery strategy effectively serves the purpose.

1 <recovery - strategy id =" strMotor ">

2 <notification - policy id =" npMotor ">

3 <condition type =" goal - failure ">

4 <condition - argument id =" target " value =" turnTableMoveUp " />

5 </condition >

6 <exception -spec id =" exMotor ">

7 <exception - argument id =" motorNumber " arity ="1" />

8 </exception -spec >

9 <goal id =" notifyStoppedMotorNumber " />

10 </ notification -policy >

11 <handling - policy id =" hpMotor ">

12 <condition type =" always " />

13 <goal id =" motorFix ">

14 <plan operator =" parallel ">

15 <goal id =" scheduleTableMotorFix " />

16 <goal id =" pauseProduction " />

17 </plan >

18 </goal >

19 </handling -policy >

20 </recovery -strategy >

Listing 6.23: Recovery strategy targeting a motor break in the production cell scenario.

6.4 Exception Handling in an Industrial Scenario: Production Cell 137

By distributing the responsibilities for scheduleTableMotorFix to the robot agent,

and for notifyStoppedMotorNumber to the table, agents are put in condition to

effectively cope with the failure.

6.4.3 Risk for Human Being

We conclude the illustration of the production cell scenario by showing how exception

handling can prove useful to support the execution of sensitive tasks, like the

treatment of perturbations arising from the interaction of the machines with a

human operator, to preserve safety. In particular, let us now capture the need to

change pace when a human operator is detected in the operational area of the

press.

1 <recovery - strategy id =" strPress ">

2 <notification - policy id =" npHuman ">

3 <condition type =" goal -ttf - expiration ">

4 <condition - argument id =" target " value =" movePressDownUp " />

5 </condition >

6 <exception -spec id =" exHuman ">

7 <exception - argument id =" slowdownCode " arity ="1" />

8 <exception - argument id =" humanCoords " arity ="2" />

9 </exception -spec >

10 <goal id =" explainSlowdownReason " />

11 </ notification -policy >

12 <handling - policy id =" hpHuman ">

13 <condition type =" custom ">

14 <condition - argument id =" formula "

15 value =" thrown (_,exHuman ,_,Args)

16 & . member (humanCoords (X,Y),Args)

17 & X < 2 & Y < 3" />

18 </condition >

19 <goal id =" emergencyStop " />

20 </handling -policy >

21 </recovery -strategy >

Listing 6.24: Recovery strategy targeting the presence of a human operator in the production

cell scenario.

We suppose that the press is equipped with sensors to detect a human operator

working at it and, for the sake of safety, it immediately slows down. Such a slowdown

may result in the impossibility to achieve movePressDownUp before the deadline.

The above listing shows the recovery strategy targeting this eventuality.

138 Chapter 6 Experimentation and Evaluation

The press agent will be then required to explain the reasons for the slowdown. In

presence of a human operator, the exact position will be provided as well, in order

to have the whole production cell calibrate its functioning accordingly, in some cases

arriving at a full stop to avoid occasional wounds.

Listing 6.25 shows a plan to be delivered to the agent handling the exception if a

human is detected in a dangerous area.

1 + obligation (Ag ,_,done(_, emergencyStop ,Ag),_)

2 : . my_name (Ag) &

3 exceptionArgument (_,exHuman , humanCoords (X,Y))

4 <- pressEmergencyStop ;

5 activateAlarm ;

6 delimitArea (X,Y);

7 goalAchieved (emergencyStop).

Listing 6.25: Agent plan to handle the presence of a human operator in the production cell

scenario.

6.5 Adapting to Adverse Conditions: Parcel Delivery

As a final illustrating scenario, let us consider a MAS organization supporting the

activity of a transportation company. In this setting, the delivery of a parcel involves

multiple steps carried out by multiple actors: first, the parcel must be prepared,

taking the goods from the warehouse, packing them up, and loading the truck. Then,

the parcel can be delivered by (i) locating the address, (ii) planning the route, (iii)

reaching the destination, and (iv) handing the parcel over to the customer. At last,

the order can be closed. Figure 6.10 shows a JaCaMo scheme for an organization

supporting the process above. Suppose that, due to some roads unexpectedly closed,

the truck delays the achievement of goal reachDestination. It would be desirable

that the planner, who is in charge of planning the routes, were notified about

the reasons, in order to plan an alternative path for the upcoming delivery. The

following strategy captures this need. Line 3 specifies that the exception should

be thrown in case of delay in the achievement of the goal reachDestination,

reportDelayReason is the throwing goal, and Line 8 specifies the expected kind

of exception. To avoid the occurrence of the same problem in future deliveries, it

6.5 Adapting to Adverse Conditions: Parcel Delivery 139

delivery

prepareParcel

takeGoodsFromWarehouse

planner

deliverParcel

packUpGoods

loadOnTruck

locateAddress

planPath
handOverToCustomer

closeOrder

unloadFromTruck

bringToCustomerDoor

collectProofOfDelivery

driverLaptopAgent

driver

orderTracker

storageAgent

packingMachine

forklift

reachDestination

truckNavigator

Figure 6.10: JaCaMo scheme for the parcel delivery scenario.

would be useful to make the information concerning the closed roads reach the

planner agent in charge of planning the path. In this way the agent could take it into

account in future planning activities, resulting in a performance improvement for

the whole organization.

1 <recovery - strategy id =" strParcel ">

2 <notification - policy id =" npParcel ">

3 <condition type =" goal -ttf - expiration ">

4 <condition - argument id =" target " value =" reachDestination " />

5 </condition >

6 <exception -spec id =" exParcel ">

7 <exception - argument id =" reason " arity ="..." />

8 <exception - argument id =" closedRoads " arity ="1" />

9 </exception -spec >

10 <goal id =" reportDelayReason " />

11 </ notification -policy >

12 <handling - policy id =" hpParcel ">

13 <condition type =" always " />

14 <goal id =" updateMap " />

15 </handling -policy >

16 </recovery -strategy >

Listing 6.26: Recovery strategy for the parcel delivery scenario.

If, as assumed, the reason is that some road is closed, the planner will use this

information to modify the routes of the agents that perform the deliveries, making

the organization adapt to the adverse contextual conditions, as with the following

plan.

140 Chapter 6 Experimentation and Evaluation

1 + obligation (_,_,done(_,updateMap ,_),_)

2 : exceptionArgument (_,exParcel , closedRoads (R))

3 <- . addToIgnoreList (R).

6.6 Summary and Comparison with Previous Approaches

To conclude the chapter, we summarize the main features of the presented exception

handling approach and compare it with the works previously reviewed in Chapters 2

and 3.

Our proposal mainly takes inspiration from exception handling mechanisms proposed

in the fields of programming languages and actors research and tries to accommodate

such a view with the peculiarities of an agent-oriented approach. More in detail,

we adopted the perspective originally put forward by Goodenough, who sees in

exception handling a powerful tool to achieve software robustness, promoting at the

same time modularity and decoupling.

In this sense, the notions of responsibility and feedback are of uttermost importance.

The proposed exception handling mechanism is grounded on both of them. Indeed,

recovery strategies shape the scope of the responsibilities that agents taking part in an

organization must take on, to enable the relevant feedback concerning perturbations

be produced from informed sources and handled by competent ones. At the same

time, the approach is seamlessy integrated, both at a conceptual and a programming

level, within the organizational framing.

Differently than the approach by Platon et al. (Platon, 2007; Platon et al., 2007a;

Platon et al., 2007b; Platon et al., 2008), where exception handling is seen as a tool

that the individual agent can activate internally, to preserve self-control despite the

occurrence of perturbations, the proposal we have made leverages the distributed

nature of exception handling, typical of programming languages and of the actor

model, and suited to distributed systems made of cooperative parties, like MAOs.

Contingency plans, in turn, realize Platon’s vision in the context of the Jason pro-

gramming language. They incorporate exception handling in the reasoning cycle of

6.6 Summary and Comparison with Previous Approaches 141

the agents, allowing them to deal with local failures that cause the impossibility to

achieve some internal goals. As highlighted in the practical use cases, the approach

is complementary to ours. Our exception handling mechanism, instead, aims at

providing support for exceptions that cannot be handled by the agents in isolation.

In this sense, the execution of a contingency plan at the agent level may later trigger

exception handling at the organizational level.

In (Klein and Dellarocas, 1999; Dellarocas and Klein, 2000; Klein and Dellarocas,

2000), the proposed exception handling service provides sentinels, that are equipped

with handlers, to be plugged into existing agent systems. The service actively looks

for exceptions in the system and prescribes specific interventions from a body of gen-

eral procedures. Sentinels communicate with agents using a predefined language for

querying about exceptions and for describing exception resolution actions. Agents,

for their part, are required to implement a minimal set of interfaces to report on

their own behavior and modify their actions, according to the prescriptions given by

the sentinels. As a difference, our proposal seamlessly integrates exception handling

into the agents themselves, without centralizing it into dedicated sentinels. In this

way, it accommodates Goodenough’s recommendation that appropriate “fixup” will

vary from one use of the operation to the next.

SaGE (Souchon et al., 2003; Souchon, 2005) integrates exception handling in the

execution model of the agents. Handlers can be defined and associated with the

services provided by an agent, as part of its behavior. However, agents since no

responsibilities to be taken by the agents are explicitly encompassed, agents are

assumed to be benevolent and cooperative. As a consequence, the framework is not

well suited for open systems where agents are self-interested.

Mallya and Singh (Mallya and Singh, 2005b; Mallya, 2005) proposed to model

exceptions via commitment-based protocols. Anticipated exceptions, occurring

during the execution of an interaction protocol (i.e., deviations from the normal

flow that occur often enough and are part of the model), are dealt with by specifying

a hierarchy of preferred runs. Preferences can, then, be used to define exceptional

runs. Exception handlers are treated as runs just like protocols. Handlers can be

142 Chapter 6 Experimentation and Evaluation

spliced inside a given protocol when an exceptional run is detected. The paper

proposes also an approach to deal with unexpected exceptions (i.e., exceptions that

are not part of the process model). Exception handlers, in this case, are constructed

dynamically from a basic set of protocols. The approach seems promising, although

some concerns related to scalability can be identified and no integration within any

agent platform is discussed.

(Gutierrez-Garcia et al., 2009) proposed an approach in which exception handlers

are modeled through obligations in deontic logic. Exceptions are seen as abnormal

situations in which agents cannot release an obligation. Exception handlers are

modeled in terms of new obligations to be issued. Despite both approaches exploit

obligations as a mechanism to deliver exception handling, this approach differs from

ours because: (i) it is not framed in an organizational dimension; (ii) exceptions

are not first-class objects, constituting a feedback for an exceptional situation, but

are rather simply conceived as abnormal situations emerging during the enactment

of an interaction protocol. At the same time, exception handling is not conceived

in terms of responsibilities taken by the agents, but rather in terms of duties that

fall on the agents. Finally, the proposal remains mainly theoretical, with no support

from a software engineering perspective.

SARL (Rodriguez et al., 2014) recently adopted an exception handling mechanism

based on the definition of special classes of events, amounting to exceptions. Agents

have also the possibility to propagate failure events to their parent agent in the

holarchy. The proposal is strongly inspired by the approach adopted in Akka,

where actors report exceptions to their parents, which in turn must enact suitable

supervision strategies to handle them. In SARL, however, autonomous agents do not

explicitly take responsibility within the society for raising and handling exception.

This is a major limitation because it hinders the creation of social expectations on

the agents’ behavior w.r.t. exception handling.

BPMN, for its part, provides a fairly expressive mechanism to model exceptional

situations possibly occurring during the distributed execution of a business process.

6.6 Summary and Comparison with Previous Approaches 143

Autonomy
Preservation

Decentralization Responsibility
Distribution

Reliable
Feedback

Platform
Integration

Programming languages - - 3 3 3

Supervision in Akka - 3 3 3 3

CA Actions - 3 3 3 7

Error Events in BPMN - 3 3 3 3

Guardian 7 7 7 7 3

Sentinels 7 7 7 3 7

SaGE 3 3 7 7 3

Platon et al. 3 7 7 7 3

Mallya and Singh 3 3 3 7 7

Gutierrez-Garcia et al. 3 3 7 7 7

SARL 3 3 7 3 3

Rainbow 7 7 7 3 3

Jason Contingency Plans 3 7 7 7 3

Our Proposal 3 3 3 3 3

Table 6.1: Feature comparison of the most prominent exception handling approaches.

14
4

C
ha

pt
er

6
Ex

pe
rim

en
ta
tio

n
an

d
Ev

al
ua

tio
n

In this sense, our proposal paves the way for a fruitful application of MAS to support

the realization of distributed business processes.

In the context self-adaptive system, the approach adopted in the Rainbow architec-

ture (Garlan et al., 2009) bears some analogies with concept of recovery strategy in

our proposal. However, the two approaches are substantially different in nature. In

(Garlan et al., 2009), the whole adaptation process is carried out by the components

constituting the proposed architecture, that is, it is not part of the system at hand. In

our approach, on the contrary, exception handling is embodied into the agents, lever-

aging their distributed nature. At the same tame, Rainbow does not take into account

the autonomy of system’s components. For this reason, no explicit responsibility dis-

tribution among them is foreseen for reporting and handling adaptation conditions.

In our perspective, instead, such a responsibility distribution is fundamental since it

enables the establishment of social relationships among autonomous components,

providing expectations on their behavior concerning exceptional situations.

Table 6.1 summarizes the main differences between the cited approaches and ours

with respect to a set of features that, we believe, should be exhibited by an exception

handling mechanism to be suitable for a MAS setting.

Autonomy Preservation. To be suitable for use in MAS, an exception handling

mechanism should not interfere with the agents’ autonomy. Our proposal respects

this requirement. An explicit responsibility assumption allows to create expectation

on the agents’ behavior w.r.t. exception handling. Nonetheless, agents remain

completely free to violate the obligations issued towards them, despite being possibly

sanctioned. At the same time, agents are autonomous in deliberating the most

suitable way to carry out their assigned tasks, either amounting to raising or handling

exceptions.

Decentralization. Multi-agent systems provide the abstractions to model and build

distributed and heterogeneous systems in a simple and straightforward way, in order

to manage their complexity. The proposed mechanism leverages this distributed

6.6 Summary and Comparison with Previous Approaches 145

nature in the exception handling process, as well. Exceptions are raised and handled

in synergy by the society of agents taking part in the organization. Each agent,

is conceived independently from the others and the organization coordinates the

distributed execution. At the same time, the exception handling mechanism is seam-

lessly integrated within the organizational infrastructure. Such an infrastructure is

reified in the environment where the agents are situated in a distributed way, too.

Responsibility Distribution. As pointed out by Goodenough, exception handling is

to be seen as a mechanism to increase the generality and facilitate the composition

of operations. Responsibility distribution then becomes fundamental to determine

which component is entitled to report the occurrence of an exception to whom and

which one is entitled to handle it. This is the foundation of our proposed exception

handling mechanism which aims at creating, through a properly devised set of

responsibilities, a bridge between the agents in charge of raising exceptions and the

ones in charge for their handling. At the same time, the approach allows to move

the responsibility for handling the exception outside of the failing agent, increasing

the generality of the applied recovery. This aspect justifies the adoption of the

organization metaphor as a particularly suitable tool to deliver an exception handling

mechanism. At the same time, it enables a uniform agent programming approach,

where each agent must be equipped with the means to fulfill its responsibilities,

should they concern exception handling or not.

Reliable Feedback. The availability of a feedback passed from the component rais-

ing the exception to the component handling it is the second pillar of Goodenough’s

vision. Indeed, a reliable feedback coming from an informed source allows to in-

crease the situational awareness of the perturbation, with straightforward benefits

in its handling. This is especially true in a multi-agent setting, where each agent

may have a different and partial view of the environment and of the overall ongoing

execution. Our proposal systematize the way in which this relevant information is

produced, encoded, delivered, and exploited for recovery.

146 Chapter 6 Experimentation and Evaluation

Platform Integration. Together with the conceptual and theoretical soundness, we

believe that the presence of a concrete programming support is fundamental for

any concrete application of exception handling. For this reason, we decided to

implement the proposed model in the context of the JaCaMo framework, even if it is

conceptually independent from any specific platform. The resulting solutions proved

to be effective in dealing with a wide range of situations, in multiple application

scenarios.

6.6 Summary and Comparison with Previous Approaches 147

Discussion and Future

Directions

7

When a system meets a perturbation it needs, in a way, to reconfigure. To this

aim: (i) relevant information should be asked to informed agents, and delivered

by these in the right format, (ii) agents should be supplied with the means for

understanding who is entitled to ask what to whom, and under which circumstances,

(iii) an appropriate handling, based on the available information, must be applied.

All such things cannot be improvised, and one would not want the agents to start

negotiations to build the new configuration at the moment because that may be an

obstacle to a prompt answer.

Exception handling serves this purpose effectively, by systematizing the way in which

channels are open, through which relevant feedback concerning the perturbation

can reach the right component for handling it. The problem of building feedback

frameworks, crucial for obtaining robustness, brings out the closeness between

exception handling and the notion of accountability.

Accountability and responsibility are sibling concepts, often used interchangeably.

However, they are different in nature. The Cambridge Dictionary defines account-

ability as:

The fact of being responsible for what you do and able to give a satisfac-

tory reason for it, or the degree to which this happens.

Under this perspective, we believe that accountability can be a useful tool for the

realization of agent organizations that exhibit robustness as a design property, as

well.

149

7.1 Exception Handling and Accountability

The notion of accountability has recently gained the attention of many authors in

the MAS field (see e.g., (Chopra and Singh, 2016; Baldoni et al., 2018a; Cranefield

et al., 2018; Baldoni et al., 2019)), who see a powerful software engineering tool in

it. We agree with this view, and add that accountability can have a fundamental role

in the design and realization of robust agent systems.

In particular, we believe that exception handling can be effectively conceived, more

generally, in terms of accountability relationships among agents in an organization.

In the following we briefly introduce the notion accountability and its usage in

human organizations. We then illustrate how our proposed exception handling

model can be read back as an accountability mechanism.

7.1.1 Accountability in the Human World

Accountability is a well-known concept in sociology and in human organizations.

It typically “emerges as a primary characteristic of governance where there is a

sense of agreement and certainty about the legitimacy of expectations between the

community members.” (Dubnick and Justice, 2004). This makes accountability a

mechanism and instrument of administrative and political power, through which

organizations can ensure the compliance of their processes to predefined standards,

as well as the force that enables changes aimed at improving the organization

(Bovens, 2010).

In general, accountability (Garfinkel, 1967; Dubnick and Justice, 2004; Grant and

Keohane, 2005; Baldoni et al., 2016; Baldoni et al., 2019) can be seen as the

assumption of responsibility for decisions and actions that an individual, or an

organization, has towards another party. The term accountability has its roots in

Latin, where it is related to the verb computare, to compute or calculate. Roughly

speaking, an accountable person has the capability to provide an account about a

condition of interest (Dubnick, 2014); that is, a person can be accountable for a

150 Chapter 7 Discussion and Future Directions

condition, only if she has some competence, or knowledge, about the very same

condition.

In many cultures, accountability is associated with blame (Dubnick, 2013), either

post factum (who is to blame for an act or an error that has occurred), or pre factum

(who is blameworthy for errors not yet occurred), but this is a very partial view

that disregards the potential involved in relationships concerning the ability and the

designation to provide response about something to someone who is legitimated

to ask. In sociology, and in ethnomethodology in particular, it is seen as a basic

mechanism that allows individuals to constitute societies (Garfinkel, 1967; Rawls,

2008). In political sciences (Grant and Keohane, 2005), accountability is a relation-

ship between a power-wielder and those holding them accountable. It expresses a

general recognition of the legitimacy of the authority of the parties that are involved

in the relationship: one to exercise particular powers and the other to hold them

to provide an account. In the literature, the party who is legitimately required

to provide the account is commonly called “account giver”, or a-giver, while the

party who can legitimately ask, under some agreed conditions, to the other party an

account about a process of interest is called the “account taker”, or a-taker, (Chopra

and Singh, 2014; Baldoni et al., 2018a; Cranefield et al., 2018).

Consequently, it is possible to recognize in accountability two main dimensions:

1. Normative dimension (expectation), capturing the legitimacy of asking and

the availability to provide accounts, yielding expectations on the individuals’

behavior;

2. Structural dimension (control), capturing that, for being accountable about a

process, an individual must have control over that process and have awareness

of the situation she will account for.

Control often is interpreted as the ability to bring about events, possibly through

other agents (see e.g., (Marengo et al., 2011; Yazdanpanah and Dastani, 2016)),

that is, to have power over a situation of interest. In the case of accountability, this

means that a-takers should be able to build the account themselves, either because

7.1 Exception Handling and Accountability 151

Figure 7.1: Accountability frameworks in human organizations.

they were directly involved in the attempt of bringing about some event, or because

they can get the information that is necessary to build an account through other

individuals.

Many organizations, and international agencies (see e.g., (Sustainable Energy for

All Initiative, n.d.; Executive Board of the United Nations Development Programme

and of the United Nations Population Fund, 2008; United Nations Children’s Fund,

2009; Zahran, 2011; World Health Organization, 2015; Office of the Auditor General

of Canada, 2002)), recognize accountability as a key component for their proper

functioning. Accountability is, in fact, the mechanism through which important

properties (such as trust, transparency, and robustness, just to mention some), can

be established within a human organization.

Accountability frameworks, like (Executive Board of the United Nations Development

Programme and of the United Nations Population Fund, 2008), are organization-

wide processes for monitoring, analyzing, and improving performance in all aspects

of the organization, based on actual data, Figure 7.111. The figure draws a pretty

general schema showing the loop that goes from decisions, and actions through

report to learning, a term that is used here to capture the modification of the orga-

nization itself aimed at bettering its performance, based on the gathered accounts

of those who were involved. It is worth noting that this process is not an end

in itself, but its ultimate goal is to exploit the information obtained through the

reporting activity to learn how the whole organizational structure can be modified

and improved w.r.t. its objectives in a virtuous circle.

11The picture is inspired by the framework schemas described in (Sustainable Energy for All Initiative,
n.d.; Zahran, 2011).

152 Chapter 7 Discussion and Future Directions

Indeed, failure, or partial achievement of the desired results, needs to be under-

stood in order to either modify the organizational goals (when they turn out to be

unreachable in that context with those resources), or to modify the organization

itself, its practices, its structure, its competences, in order to improve performance.

Accountability is supported by formally documented functions, responsibilities, au-

thority, policies and gives managers the means to address recurring and systemic

issues, and to incorporate lessons learned into future activities.

Accounts are used also by external bodies, with an oversight function, with the aim

of verifying the adherence of behaviour to specific standards – see, for instance the

General Data Protection Regulation by the European Community12.

Although accountability frameworks vary considerably, depending on the kind of

actors that are involved, on the kind of commitments, and on the activities that may

be put under scrutiny, the same approach can be seen in most (human) organizations:

the accountability framework provides the infrastructure that is necessary to a

body made of many offices and individuals, geographically distributed, to collect

information and provide it to those who are competent to interpret it, to take

decisions and influence the future activity of the whole organization.

7.1.2 Conceiving Exception Handling as Accountability

Broadly speaking, accountability relationships among principals in a distributed

system allow to open channels through which relevant local information concerning

the execution of a process (i.e., accounts) flow from informed sources (a-givers)

to those agents which are entitled to ask for it and competent to understand the

answer (a-takers). In this sense, accountability supports robustness when the

account (feedback) about a perturbation is reported to the agent who is responsible

for treating that perturbation, similarly to what happens in exception handling

mechanisms, as explained in the previous chapters. So, by enriching the specification

of an organization with a proper set of accountability relationships among the agents,

12GDPR https://eur-lex.europa.eu/eli/reg/2016/679/oj.

7.1 Exception Handling and Accountability 153

https://eur-lex.europa.eu/eli/reg/2016/679/oj

Agent LevelOrganizational Level

concept mapping

1
1

Requesting Task

1

1

Account Spec

must-account-with

1 1

1

1Accountability Agreement

can-request-when

0..1

1

0..n

1

0..n

Recovery
Strategy

1 1 Treatment Task

take on/leave

Treatment Policy

condition

achieve/fail

create/delete

adopt/leave

sub-task

Responsibility

Accounting Task

Task

Internal Goal

Agent

sub-group

Norm

RoleGroup

Organization

Figure 7.2: Our proposed conceptual model of exception handling in multi-agent organiza-
tions read in terms of accountability.

a designer can capture how the relevant information concerning exceptional events

is to be propagated along the organizational structure.

Even though we focus on exceptional situations, accountability enables the treatment

of accounts concerning behavior in positive cases, too; a feature that supports, e.g.,

compliance to standards and transparency, as well as the integration of oversight

frameworks (Baldoni et al., 2020a; Baldoni et al., 2020b).

Figure 7.2 shows the abstract model presented in Chapter 4, where the concepts

related to exception handling are interpreted in terms of accountability. In particular,

the concept of Notification Policy is mapped to Accountability Agreement,

the Exception Spec amounts to the concept of Account Spec, and the Handling

Policy is renamed Treatment Policy. Throwing Tasks and Catching Tasks are

mapped, respectively, to the concepts of Accounting Task and Treatment Task.

Additionally, another type of task – the Requesting Task – is introduced, and

associated with the concept of accountability agreement.

Accountability agreements generalize the notion of notification policy in our excep-

tion handling model. In particular, a notification policy encodes, how and when an

exception has to be raised during the functioning of an organization, upon the oc-

currence of a perturbation. In other words, it captures when an account concerning

154 Chapter 7 Discussion and Future Directions

the perturbation (i.e., the exception) must be produced by the agent responsible for

the corresponding throwing goal. Following a similar perspective, an accountability

agreement captures the permission for an agent to request (through a requesting

task) an account about the state of a given task when some conditions hold, and the

obligation for another to provide such account (through an accounting task) when

requested.

Notification policies represent a special class of accountability agreements, in which

the account for a perturbation is requested automatically every time the perturba-

tion occurs, thereby constraining the way in which agents produce and consume

accounts. For this reason, in the particular case, we can omit the requesting task

and the notification policy results in an obligation to produce the account (i.e.,

raise the exception) as soon as the condition that triggers the policy (encoding the

perturbation of interest) holds. Similarly, exceptions are special kinds of accounts,

which concern the occurrence of perturbations. Recovery strategies become then

a way to connect, through a treatment policy, the account for a perturbation with

the treatment task that can properly tackle it – in a way that is oriented towards

recovery.

As before, the association between accountability agreement and task captures the

object of the account. That is, the a-giver is expected to produce an account that

objectively concern the task indicated via this association. The same association

was present between a notification policy and a task, representing the target of the

policy.

An accountability agreement is characterized by a can-request-when attribute

(mapping the condition of interest), that specifies when an account request is

legitimate, i.e., when the a-taker has the permission of asking for an account. In

exception handling, this condition amounts to the perturbation at hand. Such a

condition represents the circumstance in which the a-giver can be held to account.

When such a condition is not met, the a-giver is not obliged to produce the account.

For instance, a buyer may hold a seller to account for some goods, but the seller will

have to provide a feedback only if the purchase actually occurred, that is, only if the

7.1 Exception Handling and Accountability 155

payment took place. Here, payment is the contextual condition that gives the buyer

the right to request the account.

The association between accountability agreement and requesting task specifies who

will serve the purpose of being a-taker, that is, the one who is responsible for the

requesting task. Note that, in some cases, an account request is the result of an

internal deliberation of the a-taker; this is a more general approach w.r.t. what

expressed by notification policies in the exception handling model. In that case, in

fact, the request phase was omitted because we assumed accounts to be needed for

any perturbation deemed to possibly occur.

The concept of account spec, characterized by a must-account-with attribute,

captures the type of knowledge that the a-giver feeds back to the a-taker upon

request. This is comparable with the informational content encoded by the exception

spec.

The association between accountability agreement and accounting task specifies

who will serve the purpose of being a-giver, that is, the one who is responsible for

the accounting task.

Finally, we highlight that accountability agreements, just like notification policies,

bring along normative expectations that can be formulated according to the norma-

tive layer (Norm in the figure).

From a computational perspective, in (Chopra and Singh, 2014; Chopra and Singh,

2016) the authors explain how, within Socio-Technical Systems, accountability plays

a fundamental role in balancing the principals’ autonomy: a principal can decide to

violate any expectation for which it is accountable, however, by way of accountability

the principal would be held to account about that violation.

The proposal in (Cranefield et al., 2018) recognizes the value of accountability in

the development of software and makes a proposal that is complementary to ours.

Specifically, the authors focus on the issue of answer production in presence of an

accountability relationship, a problem that involves: how to properly define the

temporal window to consider? Which pieces of information are relevant and, thus,

156 Chapter 7 Discussion and Future Directions

are to be kept in this temporal interval? Which questions are suitable to be asked in

this setting? The account giving agent produces an answer in terms of its internal

mechanisms. What that proposal does not provide is the organizational view of the

system of interacting agents and they do not tackle robustness and exceptions.

In (Chopra and Singh, 2018), accountability enables the process of norms adaptation

by feeding outcomes back into the design-phase. In this approach, the account is a

justification of an agent’s norm-violating behavior. This is a different understanding

of accounts than ours because, in our approach, account givers are not rule violators:

they meet perturbations, and provide information about the encountered situations.

The account takers, on their hand, will interpret the received accounts – possibly

combining them with further information provided by other agents or that simply

belongs to the callee’s level. The adaptation process in (Chopra and Singh, 2018),

that consists in norm modification, however, can be seen as a kind of robustness. Our

objective is different: we do not target norm modification, but the achievement of the

organizational goal despite the occurrence of perturbations. The two approaches are

not in contrast, rather, they complement each other. They are both exemplifications

of the perspective put forward in (Alderson and Doyle, 2010), for which a property

of a system is robust if it is invariant with respect to a set of perturbations. The

difference lies in the type of perturbations the two approaches aim at.

MOCA (Baldoni et al., 2019) provides an information model of accountability, that

captures the kind of facts that must be available to allow the identification of account

givers in certain situation of interest. The model is given in Object-Role Modeling

(ORM) (Halpin and Morgan, 2008) due to the relational nature of the represented

concepts, and enables automatic verification of consistency. The information model

is centered around two basic concepts: just expectation and control. Just expectation

is intended as the mutual awareness and acceptance of an accountability relationship

between the involved a-giver and a-taker. Control, instead, is intended as the power,

possibly exerted indirectly by means of other agents, of achieving a condition of

interest.

7.1 Exception Handling and Accountability 157

7.2 Conclusion and Future Directions

In conclusion, in this thesis we have presented an exception handling mechanism for

use in multi-agent systems, grounded on the notions of responsibility and feedback.

Its main purpose is to increase system robustness while preserving, at the same time,

autonomy of the components (agents). Exception handling, indeed, emerges from

the need for conjugating robustness with modularity among software components,

and MAS bring this feature to an extreme.

To reach the objective, we proposed to leverage the concept of responsibility in

multi-agent organizations not only to model the duties of the agents in relation to

the organizational goal, but also to enable the realization of mechanisms for raising

and handling exceptions that may occur within the organization operation.

Agents joining an organization are required to explicitly take on the responsibilities

for providing feedback about the context where exceptions are detected, and for

handling these exceptions as soon the feedback is available. In this way, the nor-

mative system, which coordinates the agents’ fulfillment of their responsibilities,

becomes a tool to specify and govern both the correct and exceptional behavior of

the system, uniformly.

The proposal has been concretely set and evaluated in the JaCaMo multi-agent

platform by means of a set of use cases. An interesting future development includes

the integration of the approach in other agent platforms, such as SARL (Rodriguez

et al., 2014), JADE (Bellifemine et al., 1999), or ASTRA (Collier et al., 2015). These

languages do not typically encompass an organizational dimension and thereby re-

quire the deployment of other mechanisms to coordinate the process of responsibility

distribution. In this sense commitment-based approaches, such as (Singh, 1999; Bal-

doni et al., 2014), may provide useful insights. At the same time, it would be useful

to determine whether and how the architectural constraints of the cited platforms

may affect and be exploited to accommodate exception handling effectively.

Another exciting research direction concerns the handling of unexpected exceptions,

which are not defined “by contract” at design time. Instead, they emerge at runtime

158 Chapter 7 Discussion and Future Directions

and for this reason the responsibility to raise and handle them cannot be distributed

a priori. Under this perspective, the research field of self-adaptive systems could

provide useful insights.

Still, as explained above, exception handling can be conceived, more generally, as an

accountability mechanism. Another promising direction for future work would be an

extension of the presented programming platform in terms of accountability, as well.

Accountability indeed, has the potential to support, besides robustness, a wide range

of non-functional requirements, such as transparency, auditability, explainability,

adaptability, and innovation. A framework allowing system components (agents in

our perspective), to exchange information in a structured way, at a different level

of that of the outcomes that are specified by functional requirements, can set the

ground for capturing a wide range of such non-functional requirements.

An accountability platform could provide evidence of agent conduct in a transparent

and automated way, while simultaneously simplifying the system reconfiguration

in case of perturbations. Potential applications range widely in such diverse fields

as, just to name a few, resource management, smart cities, industry 4.0, business

process management, public administration, and decision support.

7.2 Conclusion and Future Directions 159

References

Alderson, D. L. and Doyle, J. C. (2010). “Contrasting Views of Complexity and Their
Implications for Network-Centric Infrastructures”. In: IEEE Transactions on Systems, Man,
and Cybernetics - Part A: Systems and Humans 40.4, pp. 839–852 (cit. on pp. 1, 3, 12, 13,
157).

Aldewereld, H., O. Boissier, V. Dignum, P. Noriega, and J. Padget, eds. (2016). Social
Coordination Frameworks for Social Technical Systems. Vol. 30. Law, Governance and
Technology Series. Springer (cit. on p. 59).

Baldoni, M., Baroglio, C., Boissier, O., May, K. M., Micalizio, R., and Tedeschi, S. (2018a).
“Accountability and Responsibility in Agents Organizations”. In: PRIMA 2018: Principles
and Practice of Multi-Agent Systems, 21st International Conference. Vol. 11224. Lecture
Notes in Computer Science. Springer, pp. 403–419 (cit. on pp. 150, 151).

Baldoni, M., Baroglio, C., and Capuzzimati, F. (2014). “A Commitment-Based Infrastructure
for Programming Socio-Technical Systems”. In: ACM Transactions on Internet Technology
14.4, pp. 1–23 (cit. on p. 158).

Baldoni, M., Baroglio, C., May, K. M., Micalizio, R., and Tedeschi, S. (2016). “Compu-
tational Accountability”. In: Proceedings of the AI*IA Workshop on Deep Understanding
and Reasoning: A Challenge for Next-generation Intelligent Agents 2016 co-located with
15th International Conference of the Italian Association for Artificial Intelligence (AIxIA
2016), Genova, Italy, November 28th, 2016. Vol. 1802. CEUR Workshop Proceedings.
CEUR-WS.org, pp. 56–62 (cit. on pp. 8, 150).

Baldoni, M., Baroglio, C., May, K. M., Micalizio, R., and Tedeschi, S. (2018b). “Computational
Accountability in MAS Organizations with ADOPT”. In: Applied Sciences 8.4 (cit. on pp. 6,
61).

Baldoni, M., Baroglio, C., May, K. M., Micalizio, R., and Tedeschi, S. (2019). “MOCA: An
ORM MOdel for Computational Accountability”. In: Journal of Intelligenza Artificiale 13.1,
pp. 5–20 (cit. on pp. 8, 150, 157).

Baldoni, M., Baroglio, C., and Micalizio, R. (2020a). “Fragility and Robustness in Multiagent
Systems”. In: Engineering Multi-Agent Systems. Vol. 12589. Lecture Notes in Computer
Science. Springer, pp. 61–77 (cit. on p. 154).

Baldoni, M., Baroglio, C., Micalizio, R., and Tedeschi, S. (2020b). “Is Explanation the Real
Key Factor for Innovation?” In: Proceedings of the Italian Workshop on Explainable Artificial
Intelligence co-located with 19th International Conference of the Italian Association for
Artificial Intelligence, XAI.it@AIxIA 2020, Online Event, November 25-26, 2020. Vol. 2742.
CEUR Workshop Proceedings. CEUR-WS.org, pp. 87–95 (cit. on p. 154).

161

Bellifemine, F., Poggi, A., and Rimassa, G. (1999). “JADE - A FIPA-compliant agent frame-
work”. In: Proceedings of the Practical Applications of Intelligent Agents (cit. on pp. 2,
158).

Boella, G., Torre, L. W. N. van der, and Verhagen, H. (2008). “Introduction to the special
issue on normative multiagent systems”. In: Autonomous Agents and Multi-Agent Systems
17.1, pp. 1–10 (cit. on pp. 6, 59).

Boella, G., Van Der Torre, L., and Verhagen, H. (2006). “Introduction to normative multiagent
systems”. In: Computational & Mathematical Organization Theory 12.2-3, pp. 71–79 (cit.
on pp. 6, 59).

Boer, F. S. de, Hindriks, K. V., Hoek, W. van der, and Meyer, J.-J. C. (2007). “A verification
framework for agent programming with declarative goals”. In: Journal of Applied Logic
5.2, pp. 277–302 (cit. on p. 38).

Boissier, O., Bordini, R. H., Hübner, J. F., Ricci, A., and Santi, A. (2013). “Multi-agent Oriented
Programming with JaCaMo”. In: Science of Computer Programming 78.6, pp. 747–761
(cit. on pp. 7, 57, 59, 72, 76, 103).

Bordini, R. H., Hübner, J. F., and Wooldridge, M. (2007). Programming multi-agent systems
in AgentSpeak using Jason. John Wiley & Sons (cit. on pp. 2, 36–38, 49, 50, 72).

Bovens, M. (2010). “Two Concepts of Accountability: Accountability as a Virtue and as a
Mechanism”. In: West European Politics 33.5, pp. 946–967 (cit. on p. 150).

Bratman, M. E. (1987). Intention, plans, and practical reason. Harvard University Press
(cit. on p. 37).

Bratman, M. E., Israel, D. J., and Pollack, M. E. (1988). “Plans and resource-bounded
practical reasoning”. In: Computational Intelligence 4.3, pp. 349–355 (cit. on p. 37).

Brito, M. de, Hübner, J. F., and Boissier, O. (2017). “Situated artificial institutions: stability,
consistency, and flexibility in the regulation of agent societies”. In: Autonomous Agents
and Multi-Agent Systems, pp. 1–33 (cit. on p. 57).

Buhr, P. A. and Mok, W. Y. R. (2000). “Advanced Exception Handling Mechanisms”. In: IEEE
Transactions on Software Engineering 26.9, pp. 820–836 (cit. on pp. 2, 13).

Campbell, R. H. and Randell, B. (1986). “Error recovery in asynchronous systems”. In: IEEE
Transactions on Software Engineering 8, pp. 811–826 (cit. on pp. 27, 43).

Cheng, B. H. C., Lemos, R. de, Giese, H., et al. (2009). “Software Engineering for Self-
Adaptive Systems: A Research Roadmap”. In: Software Engineering for Self-Adaptive Sys-
tems. Vol. 5525. Lecture Notes in Computer Science. Springer, pp. 1–26 (cit. on p. 32).

Chopra, A. K. and Singh, M. P. (2014). “The thing itself speaks: Accountability as a foundation
for requirements in sociotechnical systems”. In: 2014 IEEE 7th International Workshop on
Requirements Engineering and Law (RELAW), pp. 22–22 (cit. on pp. 8, 151, 156).

Chopra, A. K. and Singh, M. P. (2016). “From social machines to social protocols: Soft-
ware engineering foundations for sociotechnical systems”. In: Proceedings of the 25th
International Conference on World Wide Web, pp. 903–914 (cit. on pp. 6, 60, 150, 156).

162 References

Chopra, A. K. and Singh, M. P. (2018). “Sociotechnical Systems and Ethics in the Large”. In:
Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, AIES 2018, New
Orleans, LA, USA, February 02-03, 2018. ACM, pp. 48–53 (cit. on p. 157).

Collier, R. W., Russell, S., and Lillis, D. (2015). “Reflecting on agent programming with
AgentSpeak(L)”. In: PRIMA 2015: Principles and Practice of Multi-Agent Systems. Vol. 9387.
Lecture Notes in Computer Science. Springer, pp. 351–366 (cit. on pp. 38, 158).

Corkill, D. D. and Lesser, V. R. (1983). “The Use of Meta-Level Control for Coordination
in Distributed Problem Solving Network”. In: Proceedings of the 8th International Joint
Conference on Artificial Intelligence (IJCAI’83). William Kaufmann, pp. 748–756 (cit. on
pp. 5, 58).

Cossentino, M., Lopes, S., and Sabatucci, L. (2020). “A Tool for the Automatic Generation
of MOISE Organisations From BPMN”. In: Proceedings of the Workshop on 21st Workshop
"From Objects to Agents", Bologna, Italy, September 14-16, 2020. Vol. 2706. CEUR Workshop
Proceedings. CEUR-WS.org, pp. 69–82 (cit. on p. 120).

Cossentino, M., Lopes, S., and Sabatucci, L. (2021). “Automatic Definition of MOISE Organi-
zations for Adaptive Workflows”. In: Proceedings of the 13th International Conference on
Agents and Artificial Intelligence, ICAART 2021, Volume 1, Online Streaming, February 4-6,
2021. SciTePress, pp. 125–136 (cit. on p. 120).

Cranefield, S., Oren, N., and Vasconcelos, W. W. (2018). “Accountability for Practical
Reasoning Agents”. In: Agreement Technologies - 6th International Conference, AT 2018,
Bergen, Norway, December 6-7, 2018, Revised Selected Papers. Vol. 11327. Lecture Notes in
Computer Science. Springer, pp. 33–48 (cit. on pp. 150, 151, 156).

Cristian, F. (1985). “Exception handling and software fault tolerance”. In: Reliable Computer
Systems. Springer, pp. 154–172 (cit. on pp. 2, 13).

Dastani, M. (2008). “2APL: a practical agent programming language”. In: Autonomous Agents
and Multi-Agent Systems 16.3, pp. 214–248 (cit. on p. 38).

Dastani, M., Tinnemeier, N. A. M., and Meyer, J.-J. C. (2009). “A programming language
for normative multi-agent systems”. In: Handbook of Research on Multi-Agent Systems:
semantics and dynamics of organizational models. IGI Global, pp. 397–417 (cit. on pp. 5,
59).

Dellarocas, C. and Klein, M. (2000). “An experimental evaluation of domain-independent
fault handling services in open multi-agent systems”. In: Proceedings Fourth International
Conference on MultiAgent Systems. IEEE, pp. 95–102 (cit. on pp. 41, 142).

Dignum, V. (2004). “A model for organizational interaction: based on agents, founded in
logic”. Published by SIKS. PhD thesis. Utrecht University, The Netherlands (cit. on p. 59).

Dignum, V. (2009). Handbook of Research on Multi-agent Systems: Semantics and Dynamics
of Organizational Models (cit. on p. 58).

Dignum, V., Dignum, F., and Meyer, J.-J. C. (2004a). “An agent-mediated approach to the
support of knowledge sharing in organizations”. In: The Knowledge Engineering Review
19.2, pp. 147–174 (cit. on pp. 5, 57, 58).

References 163

Dignum, V., Vázquez-Salceda, J., and Dignum, F. (2004b). “OMNI: Introducing Social
Structure, Norms and Ontologies into Agent Organizations”. In: Programming Multi-
Agent Systems, Second International Workshop ProMAS, Selected Revised and Invited Papers.
Vol. 3346. Lecture Notes in Computer Science. Springer, pp. 181–198 (cit. on pp. 5, 57,
59, 60).

Dubnick, M. J. (2013). Blameworthiness, Trustworthiness, and the Second-Personal Standpoint:
Foundations for an Ethical Theory of Accountability. Presented at EGPA Annual Conference,
Group VII: Quality and Integrity of Governance, Edinburgh, Scotland (cit. on pp. 8, 151).

Dubnick, M. J. (2014). “Accountability as a Cultural Keyword”. In: Oxford Handbook on
Public Accountability. Oxford University Press, pp. 23–38 (cit. on p. 150).

Dubnick, M. J. and Justice, J. B. (2004). Accounting for Accountability. Annual Meeting of
the American Political Science Association (cit. on pp. 8, 150).

Elder-Vass, D. (2011). The Causal Power of Social Structures: Emergence, Structure and Agency.
Cambridge University Press (cit. on pp. 3, 58).

Esteva, M., Rodríguez-Aguilar, J.-A., Sierra, C., Garcia, P., and Arcos, J. L. (2001). “On
the Formal Specification of Electronic Institutions”. In: Agent Mediated Electronic Com-
merce: The European AgentLink Perspective. Vol. 1991. Lecture Notes in Computer Science.
Springer, pp. 126–147 (cit. on p. 59).

Executive Board of the United Nations Development Programme and of the United Nations
Population Fund (2008). The UNDP accountability system, Accountability framework and
oversight policy. Tech. rep. DP/2008/16/Rev.1. United Nations (cit. on p. 152).

Feltus, C. (2014). “Aligning Access Rights to Governance Needs with the Responsability
MetaModel (ReMMo) in the Frame of Enterprise Architecture”. PhD thesis. University of
Namur, Belgium (cit. on pp. 7, 57, 60).

Fernandez, J.-C., Mounier, L., and Pachon, C. (2005). “A Model-based Approach for Robust-
ness Testing”. In: Testing of Communicating Systems. Vol. 3502. Lecture Notes in Computer
Science. Springer, pp. 333–348 (cit. on pp. 1, 12).

Fernández-Díaz, Á., Benac-Earle, C., and Fredlund, L.-A. (2015). “Adding distribution and
fault tolerance to Jason”. In: Science of Computer Programming 98. Special Issue on
Programming Based on Actors, Agents and Decentralized Control, pp. 205–232 (cit. on
p. 51).

Fischer, K., Schillo, M., and Siekmann, J. (2003). “Holonic multiagent systems: A foundation
for the organisation of multiagent systems”. In: Holonic and Multi-Agent Systems for
Manufacturing. Vol. 2744. Lecture Notes in Computer Science. Springer, pp. 71–80 (cit. on
p. 48).

Fornara, N., Viganò, F., Verdicchio, M., and Colombetti, M. (2008). “Artificial institutions: a
model of institutional reality for open multiagent systems”. In: Artificial Intelligence and
Law 16.1, pp. 89–105 (cit. on pp. 5, 59).

Friedman, D. P., Haynes, C. T., and Kohlbecker, E. (1984). “Programming with Continua-
tions”. In: Program Transformation and Programming Environments. Springer, pp. 263–274
(cit. on p. 19).

164 References

Garfinkel, H. (1967). Studies in ethnomethodology. Prentice-Hall Inc. (cit. on pp. 8, 150,
151).

Garlan, D., Schmerl, B., and Cheng, S.-W. (2009). “Software Architecture-Based Self-
Adaptation”. In: Autonomic Computing and Networking. Springer, pp. 31–55 (cit. on
pp. 32, 33, 145).

Georgeff, M. P. and Lansky, A. L. (1987). “Reactive reasoning and planning”. In: Proceedings
of the Sixth National Conference on Artificial Intelligence - Volume 2. Vol. 87. AAAI’87. AAAI,
pp. 677–682 (cit. on p. 38).

Gerber, C., Siekmann, J., and Vierke, G. (1999). Holonic multi-agent systems. Tech. rep.
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (cit. on p. 48).

Goodenough, J. B. (1975a). “Exception Handling Design Issues”. In: ACM SIGPLAN Notices
10.7, pp. 41–45 (cit. on pp. 2, 13, 14).

Goodenough, J. B. (1975b). “Exception Handling: Issues and a Proposed Notation”. In:
Communications of the ACM 18.12, pp. 683–696 (cit. on p. 14).

Goodenough, J. B. (1975c). “Structured Exception Handling”. In: Proceedings of the 2nd ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages. POPL ’75. ACM,
pp. 204–224 (cit. on p. 14).

Goodwin, J. (2015). Learning Akka. Packt Publishing Ltd (cit. on p. 22).

Grant, R. W. and Keohane, R. O. (2005). “Accountability and Abuses of Power in World
Politics”. In: The American Political Science Review 99.1, pp. 29–43 (cit. on pp. 8, 150,
151).

Gupta, M. (2012). Akka essentials. Packt Publishing Ltd (cit. on p. 21).

Gutierrez-Garcia, J. O., Koning, J.-L., and Ramos-Corchado, F. F. (2009). “An Obligation
Approach for Exception Handling in Interaction Protocols”. In: Proceedings of the 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent
Technology - Volume 03. WI-IAT ’09. IEEE Computer Society, pp. 497–500 (cit. on pp. 47,
143).

Hägg, S. (1997). “A sentinel approach to fault handling in multi-agent systems”. In: Multi-
Agent Systems Methodologies and Applications. Vol. 1286. Lecture Notes in Computer
Science. Springer, pp. 181–195 (cit. on pp. 40, 41).

Halpin, T. and Morgan, T. (2008). Information Modeling and Relational Databases. Morgan
Kaufmann Publishers (cit. on p. 157).

Hewitt, C., Bishop, P., and Steiger, R. (1973). “A Universal Modular ACTOR Formalism for
Artificial Intelligence”. In: Proceedings of the 3rd International Joint Conference on Artificial
Intelligence. IJCAI’73. Morgan Kaufmann Publishers Inc., pp. 235–245 (cit. on p. 20).

Hindriks, K. V., De Boer, F. S., Hoek, W. van der, and Meyer, J.-J. C. (1999). “Agent program-
ming in 3APL”. In: Autonomous Agents and Multi-Agent Systems 2.4, pp. 357–401 (cit. on
p. 38).

References 165

Hübner, J. F., Boissier, O., and Bordini, R. H. (2009). “A Normative Organisation Pro-
gramming Language for Organisation Management Infrastructures”. In: Coordination,
Organizations, Institutions and Norms in Agent Systems V. Vol. 6069. Lecture Notes in
Computer Science. Springer, pp. 114–129 (cit. on pp. 78, 79, 99).

Hübner, J. F., Boissier, O., and Bordini, R. H. (2010a). “From organisation specification
to normative programming in multi-agent organisations”. In: Computational Logic in
Multi-Agent Systems. Vol. 6245. Lecture Notes in Computer Science. Springer, pp. 117–134
(cit. on p. 78).

Hübner, J. F., Boissier, O., and Bordini, R. H. (2011). “A normative programming language
for multi-agent organisations”. In: Annals of Mathematics and Artificial Intelligence 62.1,
pp. 27–53 (cit. on pp. 78, 79).

Hübner, J. F., Boissier, O., Kitio, R., and Ricci, A. (2010b). “Instrumenting multi-agent
organisations with organisational artifacts and agents”. In: Autonomous Agents and Multi-
Agent Systems 20.3, pp. 369–400 (cit. on p. 74).

Hübner, J. F., Sichman, J. S., and Boissier, O. (2007). “Developing Organised Multiagent
Systems Using the MOISE+ Model: Programming Issues at the System and Agent Levels”.
In: International Journal of Agent-Oriented Software Engineering 1.3/4, pp. 370–395 (cit.
on pp. 5, 57, 58, 60, 72).

An Architectural Blueprint for Autonomic Computing (2005). Tech. rep. IBM (cit. on pp. 32,
33).

“ISO/IEC/IEEE International Standard - Systems and software engineering – Vocabulary”
(2010). In: ISO/IEC/IEEE 24765:2010(E), pp. 1–418 (cit. on pp. 11, 13).

Issarny, V. (2001). “Concurrent Exception Handling”. In: Advances in Exception Handling
Techniques. Vol. 2022. Lecture Notes in Computer Science. Springer, pp. 111–127 (cit. on
p. 43).

Klein, M. and Dellarocas, C. (1999). “Exception handling in agent systems”. In: Proceedings
of the Third Annual Conference on Autonomous Agents. AGENTS ’99. ACM, pp. 62–68
(cit. on pp. 41, 142).

Klein, M. and Dellarocas, C. (2000). “A knowledge-based approach to handling exceptions in
workflow systems”. In: Computer Supported Cooperative Work (CSCW) 9.3-4, pp. 399–412
(cit. on pp. 41, 142).

Klein, M., Rodriguez-Aguilar, J.-A., and Dellarocas, C. (2003). “Using domain-independent
exception handling services to enable robust open multi-agent systems: The case of agent
death”. In: Autonomous Agents and Multi-Agent Systems 7.1-2, pp. 179–189 (cit. on p. 42).

Krupitzer, C., Roth, F. M., VanSyckel, S., Schiele, G., and Becker, C. (2015). “A survey on
engineering approaches for self-adaptive systems”. In: Pervasive and Mobile Computing 17.
10 years of Pervasive Computing’ In Honor of Chatschik Bisdikian, pp. 184–206 (cit. on
p. 34).

166 References

Lemos, R. de, Giese, H., Müller, H. A., et al. (2013). “Software Engineering for Self-Adaptive
Systems: A Second Research Roadmap”. In: Software Engineering for Self-Adaptive Systems
II: International Seminar, Dagstuhl Castle, Germany, October 24-29, 2010 Revised Selected
and Invited Papers. Vol. 7475. Lecture Notes in Computer Science. Springer, pp. 1–32
(cit. on p. 32).

Lewerentz, C. and Lindner, T. (1995). Formal development of reactive systems: case study
production cell. Vol. 891. Springer Science & Business Media (cit. on p. 134).

López y López, F. and Luck, M. (2003). “Modelling Norms for Autonomous Agents”. In: 4th
Mexican International Conference on Computer Science (ENC 2003), 8-12 September 2003,
Apizaco, Mexico. IEEE Computer Society, pp. 238–245 (cit. on pp. 59, 60).

Macías-Escrivá, F. D., Haber, R., del Toro, R., and Hernandez, V. (2013). “Self-adaptive
systems: A survey of current approaches, research challenges and applications”. In: Expert
Systems with Applications 40.18, pp. 7267–7279 (cit. on pp. 32, 34).

Mallya, A. U. and Singh, M. P. (2005a). “A Semantic Approach for Designing Commitment
Protocols”. In: Agent Communication. Vol. 3396. Lecture Notes in Computer Science.
Springer, pp. 33–49 (cit. on p. 47).

Mallya, A. U. and Singh, M. P. (2005b). “Modeling Exceptions via Commitment Protocols”.
In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and
Multiagent Systems. AAMAS ’05. ACM, pp. 122–129 (cit. on pp. 46, 47, 142).

Mallya, A. U. (2005). “Modeling and Enacting Business Processes via Commitment Protocols
among Agents”. PhD thesis (cit. on pp. 46, 142).

Marengo, E., Baldoni, M., Baroglio, C., Chopra, A., Patti, V., and Singh, M. (2011). “Commit-
ments with regulations: reasoning about safety and control in REGULA”. In: Proceedings of
the 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
Vol. 2. IFAAMAS, pp. 467–474 (cit. on p. 151).

Meyer, B. (1988). Object-oriented software construction. Vol. 2. Prentice Hall New York (cit. on
p. 7).

Miller, R. and Tripathi, A. (1997). “Issues with exception handling in object-oriented systems”.
In: ECOOP’97 — Object-Oriented Programming. Vol. 1241. Lecture Notes in Computer
Science. Springer, pp. 85–103 (cit. on p. 16).

Miller, R. and Tripathi, A. (2004). “The guardian model and primitives for exception handling
in distributed systems”. In: IEEE Transactions on Software Engineering 30.12, pp. 1008–
1022 (cit. on p. 39).

Object Management Group (2021). BPMN Specification - Business Process Model and Notation.
Online, accessed 15/09/2021 (cit. on pp. 122, 130).

Office of the Auditor General of Canada (2002). 2002 December Report of the Auditor General
of Canada: Chapter 9. Accessed 15/09/2021. URL: https://publications.gc.ca/
collections/collection_2012/bvg-oag/FA1-2002-2-17-eng.pdf (cit. on p. 152).

Omicini, A., Ricci, A., and Viroli, M. (2008). “Artifacts in the A&A Meta-Model for Multi-
Agent Systems”. In: Autonomous Agents and Multi-Agent Systems 17.3, pp. 432–456 (cit. on
p. 73).

References 167

https://publications.gc.ca/collections/collection_2012/bvg-oag/FA1-2002-2-17-eng.pdf
https://publications.gc.ca/collections/collection_2012/bvg-oag/FA1-2002-2-17-eng.pdf

Pereira, D. P. and Melo, A. C. V. de (2010). “Formalization of an architectural model for
exception handling coordination based on CA action concepts”. In: Science of Computer
Programming 75.5. Coordination Models, Languages and Applications (SAC’08), pp. 333–
349 (cit. on p. 26).

Platon, E. (2007). “Modeling exception management in multi-agent systems”. PhD thesis.
Université Pierre et Marie Curie, France (cit. on pp. 15, 44, 141).

Platon, E., Sabouret, N., and Honiden, S. (2007a). “A Definition of Exceptions in Agent-
Oriented Computing”. In: Engineering Societies in the Agents World VII. Vol. 4457. Lecture
Notes in Computer Science. Springer, pp. 161–174 (cit. on pp. 44, 141).

Platon, E., Sabouret, N., and Honiden, S. (2007b). “Challenges for Exception Handling
in Multi-Agent Systems”. In: Software Engineering for Multi-Agent Systems V. Vol. 4408.
Lecture Notes in Computer Science. Springer, pp. 41–56 (cit. on pp. 44, 141).

Platon, E., Sabouret, N., and Honiden, S. (2008). “An architecture for exception management
in multiagent systems”. In: International Journal of Agent-Oriented Software Engineering
2.3, pp. 267–289 (cit. on pp. 44, 45, 50, 141).

Randell, B., Romanovsky, A., Stroud, R. J., Xu, J., and Zorzo, A. F. (1997). “Coordinated
atomic actions: from concept to implementation”. In: Submitted to Special Issue of IEEE
Transactions on Computers (cit. on p. 26).

Rao, A. S. (1996). “AgentSpeak(L): BDI agents speak out in a logical computable language”.
In: Agents Breaking Away: 7th European Workshop on Modelling Autonomous Agents in
a Multi-Agent World, MAAMAW ’96 Eindhoven, The Netherlands, January 22–25, 1996
Proceedings. Vol. 1038. Lecture Notes in Computer Science. Springer, pp. 42–55 (cit. on
pp. 38, 49, 73).

Rawls, A. W. (2008). “Harold Garfinkel, Ethnomethodology and Workplace Studies”. In:
Organization Studies 29.701 (cit. on p. 151).

Reynolds, J. C. (1993). “The Discoveries of Continuations”. In: Lisp and Symbolic Computation
6.3-4, pp. 233–248 (cit. on p. 19).

Ricci, A., Piunti, M., Viroli, M., and Omicini, A. (2009). “Environment Programming in
CArtAgO”. In: Multi-Agent Programming: Languages, Tools and Applications. Springer,
pp. 259–288 (cit. on pp. 2, 72).

Rodriguez, S., Gaud, N., and Galland, S. (2014). “SARL: A General-Purpose Agent-Oriented
Programming Language”. In: 2014 IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT). Vol. 3, pp. 103–110 (cit. on pp. 2,
48, 143, 158).

Romanovsky, A. (2001). “Coordinated Atomic Actions: How to Remain ACID in the Modern
World”. In: SIGSOFT Software Engineering Notes 26.2, pp. 66–68 (cit. on p. 26).

Russell, S. and Norvig, P. (2002). Artificial intelligence: a modern approach (cit. on pp. 36,
37).

Sabatucci, L. and Cossentino, M. (2019). “Supporting Dynamic Workflows with Automatic
Extraction of Goals from BPMN”. In: ACM Transactions on Autonomous and Adaptive
Systems 14.2 (cit. on p. 120).

168 References

Sabatucci, L., Seidita, V., and Cossentino, M. (2018). “The Four Types of Self-adaptive
Systems: A Metamodel”. In: Intelligent Interactive Multimedia Systems and Services 2017.
Vol. 76. Smart Innovation, Systems and Technologies. Springer, pp. 440–450 (cit. on
p. 34).

Schillo, M. and Fischer, K. (2002). “Holonic multiagent systems”. In: Manufacturing Systems
8.13, pp. 538–550 (cit. on p. 48).

Seborg, D. E., Mellichamp, D. A., Edgar, T. F., and Doyle III, F. J. (2010). Process dynamics
and control. John Wiley & Sons (cit. on p. 32).

Shah, N., Chao, K.-M., Godwin, N., and James, A. (2005). “Exception diagnosis in open
multi-agent systems”. In: IEEE/WIC/ACM International Conference on Intelligent Agent
Technology. IEEE, pp. 483–486 (cit. on p. 42).

Shah, N., Chao, K.-M., Godwin, N., James, A., and Tasi, C.-F. (2006). “An empirical evaluation
of a sentinel based approach to exception diagnosis in multi-agent systems”. In: 20th
International Conference on Advanced Information Networking and Applications-Volume 1
(AINA’06). Vol. 1. IEEE, pp. 379–386 (cit. on p. 42).

Shah, N., Chao, K.-M., Godwin, N., Younas, M., and Laing, C. (2004). “Exception diagnosis
in agent-based grid computing”. In: 2004 IEEE International Conference on Systems, Man
and Cybernetics (IEEE Cat. No. 04CH37583). Vol. 4. IEEE, pp. 3213–3219 (cit. on p. 42).

Shoham, Y. (1993). “Agent-oriented programming”. In: Artificial Intelligence 60.1, pp. 51–92
(cit. on p. 38).

Silver, B. (2011). BPMN Method and Style: With BPMN Implementer’s Guide. Cody-Cassidy
Press (cit. on p. 29).

Singh, M. P. (1999). “An ontology for commitments in multiagent systems”. In: Artificial
Intelligence and Law 7.1, pp. 97–113 (cit. on pp. 46, 158).

Singh, M. P. (2013). “Norms as a basis for governing sociotechnical systems”. In: ACM
Transactions on Intelligent Systems and Technology 5.1, p. 21 (cit. on pp. 6, 59).

Sommerville, I. (2007). “Models for Responsibility Assignment”. In: Responsibility and
Dependable Systems. Springer, pp. 165–186 (cit. on p. 7).

Sommerville, I., Storer, T., and Lock, R. (2009). “Responsibility modelling for civil emergency
planning”. In: Risk Management 11.3, pp. 179–207 (cit. on p. 7).

Souchon, F. (2005). “SaGE, un Système de Gestion d’Exceptions pour la programmation
orientée message: Le cas des Systèmes Multi-Agents et des Plates-formes à base de
Composants Logiciels”. PhD thesis. Université des Sciences et Techniques du Languedoc,
France (cit. on pp. 43, 142).

Souchon, F., Dony, C., Urtado, C., and Vauttier, S. (2003). “Improving exception handling
in multi-agent systems”. In: Software Engineering for Multi-Agent Systems II. Vol. 2940.
Lecture Notes in Computer Science. Springer, pp. 167–188 (cit. on pp. 43, 142).

Sustainable Energy for All Initiative (n.d.). Accountability Framework. Accessed 15/09/2021.
URL: https://sustainabledevelopment.un.org/content/documents/1644se4all.
pdf (cit. on p. 152).

References 169

https://sustainabledevelopment.un.org/content/documents/1644se4all.pdf
https://sustainabledevelopment.un.org/content/documents/1644se4all.pdf

Timm, I. J., Scholz, T., Herzog, O., Krempels, K., and Spaniol, O. (2006). “From Agents to
Multiagent Systems”. In: Multiagent Engineering, Theory and Applications in Enterprises.
Springer, pp. 35–51 (cit. on p. 3).

Tripathi, A. and Miller, R. (2001). “Exception Handling in Agent-Oriented Systems”. In:
Advances in Exception Handling Techniques. Vol. 2022. Lecture Notes in Computer Science.
Springer, pp. 128–146 (cit. on p. 39).

United Nations Children’s Fund (2009). Report on the accountability system of UNICEF.
E/ICEF/2009/15, accessed 15/09/2021. URL: https://sites.unicef.org/about/
execboard/files/09-15-accountability-ODS-English.pdf (cit. on p. 152).

Van der Aalst, W. M. (2013). “Business process management: a comprehensive survey”. In:
International Scholarly Research Notices 2013 (cit. on pp. 8, 28).

Vincent, N. A. (2011). “Moral Responsibility”. In: vol. 27. Library of Ethics and Applied
Philosophy. Springer. Chap. A Structured Taxonomy of Responsibility Concepts (cit. on
pp. 6, 58).

Weske, M. (2007). Business Process Management: Concepts, Languages, Architectures. Springer
(cit. on pp. 8, 27, 120).

Weyns, D. and Georgeff, M. (2009). “Self-adaptation using multiagent systems”. In: IEEE
Software 27.1, pp. 86–91 (cit. on p. 34).

Weyns, D., Omicini, A., and Odell, J. (2007). “Environment as a first class abstraction in
multiagent systems”. In: Autonomous Agents and Multi-Agent Systems 14.1, pp. 5–30
(cit. on p. 73).

White, S. A. (2004). “Introduction to BPMN”. In: IBM Cooperation 2.0 (cit. on p. 28).

Whittle, J., Sawyer, P., Bencomo, N., Cheng, B. H., and Bruel, J.-M. (2009). “RELAX:
Incorporating Uncertainty into the Specification of Self-Adaptive Systems”. In: 2009 17th
IEEE International Requirements Engineering Conference. IEEE, pp. 79–88 (cit. on p. 32).

Wijngaarden, A. van (1966). Recursive Definition of Syntax and Semantics: (proceedings Ifip
Working Conference on Formal Language Description Languages, Vienna 1966, P 13-24).
Stichting Mathematisch Centrum. Rekenafdeling (cit. on p. 19).

Woods, D. D. (2016). “The Risks of Autonomy: Doyle’s Catch”. In: Journal of Cognitive
Engineering and Decision Making 10.2, pp. 131–133 (cit. on p. 3).

Wooldridge, M. (2009). An introduction to multiagent systems. John Wiley & Sons (cit. on
pp. 2, 36).

Wooldridge, M. J. and Jennings, N. R. (1995). “Intelligent agents: Theory and practice”. In:
The Knowledge Engineering Review 10.2, pp. 115–152 (cit. on p. 36).

World Health Organization (2015). WHO Accountability Framework. Accessed 15/09/2021.
URL: https : / / www . who . int / about / who _ reform / managerial / accountability -
framework.pdf (cit. on p. 152).

170 References

https://sites.unicef.org/about/execboard/files/09-15-accountability-ODS-English.pdf
https://sites.unicef.org/about/execboard/files/09-15-accountability-ODS-English.pdf
https://www.who.int/about/who_reform/managerial/accountability-framework.pdf
https://www.who.int/about/who_reform/managerial/accountability-framework.pdf

Xu, J., Randell, B., Romanovsky, A., Rubira, C. M. F., Stroud, R. J., and Wu, Z. (1995). “Fault
tolerance in concurrent object-oriented software through coordinated error recovery”. In:
Twenty-Fifth International Symposium on Fault-Tolerant Computing. Digest of Papers. IEEE,
pp. 499–508 (cit. on p. 26).

Xu, J., Romanovsky, A., and Randell, B. (1998). “Coordinated exception handling in dis-
tributed object systems: from model to system implementation”. In: Proceedings. 18th
International Conference on Distributed Computing Systems, pp. 12–21 (cit. on p. 26).

Xu, J., Romanovsky, A., and Randell, B. (2000). “Concurrent Exception Handling and
Resolution in Distributed Object Systems”. In: IEEE Transactions on Parallel and Distributed
Systems 11.10, pp. 1019–1032 (cit. on p. 26).

Yazdanpanah, V. and Dastani, M. (2016). “Distant Group Responsibility in Multi-agent
Systems”. In: PRIMA 2016: Princiles and Practice of Multi-Agent Systems. Vol. 9862. Lecture
Notes in Computer Science. Springer, pp. 261–278 (cit. on p. 151).

Zahran, M. (2011). Accountability Frameworks in the United Nations System. Accessed
15/09/2021. URL: https://www.unjiu.org/sites/www.unjiu.org/files/jiu_
document_files/products/en/reports-notes/JIU%20Products/JIU_REP_2011_5_
English.pdf (cit. on p. 152).

Zambonelli, F., Jennings, N. R., and Wooldridge, M. (2003). “Developing multiagent systems:
The Gaia methodology”. In: ACM Transactions on Software Engeering and Methodology
12.3, pp. 317–370 (cit. on pp. 5, 57, 58).

References 171

https://www.unjiu.org/sites/www.unjiu.org/files/jiu_document_files/products/en/reports-notes/JIU%20Products/JIU_REP_2011_5_English.pdf
https://www.unjiu.org/sites/www.unjiu.org/files/jiu_document_files/products/en/reports-notes/JIU%20Products/JIU_REP_2011_5_English.pdf
https://www.unjiu.org/sites/www.unjiu.org/files/jiu_document_files/products/en/reports-notes/JIU%20Products/JIU_REP_2011_5_English.pdf

List of Figures

2.1 A very simple BPMN diagram. 30

2.2 Example of exception handling in BPMN. 31

2.3 Example of exception handling in BPMN with event subprocess. 32

2.4 MAPE-K loop in the IBM autonomic framework (IBM, 2005). 33

3.1 Multi-agent application environment in the Guardian model. 39

4.1 Abstract model of an agent organization. 57

4.2 Abstract model of an agent organization extended for exception handling. 62

4.3 Lifecycle of an exception in our proposed model. 66

5.1 JaCaMo programming metamodel . 76

5.2 Basic kinds of organizational artifacts in JaCaMo and their usage inter-

faces. 77

5.3 State transitions for obligations in JaCaMo. 79

5.4 Moise’s organizational metamodel extended for exception handling. . 80

5.5 Extended lifecycle of a JaCaMo goal. 81

5.6 Interaction between agents and organization for exception handling. . 85

6.1 Functional decomposition of the organizational goal in the building-a-

house organization . 103

6.2 Functional decomposition of the building-a-house organizational goal ex-

tended with the recovery strategy targeting the failure of site_prepared.105

6.3 Functional decomposition of the bakery organizational goal. 113

6.4 The incident management BPMN diagram enriched with exception man-

agement. 123

6.5 Social scheme realizing the Key Account Manager process. 125

173

6.6 The Amazon order fulfillment BPMN diagram. 130

6.7 The Customer process organizational scheme in the Amazon order

fulfillment scenario. 130

6.8 Industrial production cell. 133

6.9 JaCaMo scheme for the production cell scenario. 134

6.10 JaCaMo scheme for the parcel delivery scenario. 140

7.1 Accountability frameworks in human organizations. 152

7.2 Our proposed conceptual model of exception handling in multi-agent

organizations read in terms of accountability. 154

174 List of Figures

List of Tables

5.1 Condition types for recovery strategies. 84

6.1 Feature comparison of the most prominent exception handling ap-

proaches. 144

175

List of Listings

2.1 Example of exception handling in Java. 16

2.2 Example of exception handling in Akka. 24

5.1 Functional specification of a Moise organization realizing the ATM

scenario. 74

5.2 Excerpt of the parser agent in the ATM scenario. 78

5.3 Recovery Strategy for a not a number exception in the ATM organiza-

tional specification. 83

5.4 Parser agent in the ATM organization, extended for exception handling. 86

5.5 Request handler agent in the ATM organization. 87

5.6 Recovery stategy targeting the amount unavailable exception. 88

5.7 ATM handler agent in the ATM organization. 89

5.8 scheme element extended inMoise’s XML schema. 90

5.9 Element type encoding a recovery strategy inMoise’s XML schema. . 90

5.10 Element type encoding a notification policy inMoise’s XML schema. . 90

5.11 Element type encoding a policy condition inMoise’s XML schema. . . 91

5.12 Element type encoding an exception spec inMoise’s XML schema. . . 91

5.13 Element type encoding a handling policy inMoise’s XML schema. . . 92

5.14 Recovery strategy for not a number translated in NOPL. 94

5.15 NOPL rule which enables throwing goals. 94

5.16 NOPL rule which enables catching goals. 95

5.17 NOPL norm issuing obligations to achieve goals. 96

5.18 NOPL norm regimenting goal failure. 96

5.19 NOPL norm regimenting the throwing of unknown exceptions. 96

5.20 NOPL norm regimenting exception throwing conditions. 97

177

5.21 NOPL norm regulating agents allowed to throw exceptions. 97

5.22 NOPL norm regulating the achievement of throwing goals. 98

5.23 NOPL norm regimenting exception arguments groundness. 98

5.24 NOPL norm regulating the absence of required exception arguments. . 98

5.25 NOPL norm prohibiting undesired exception arguments. 99

6.1 Recovery strategy targeting a failure in site preparation in the building-

a-house scenario. 104

6.2 Code of the site prep contractor agent, raising the site preparation

exception. 106

6.3 Code of the engineer agent in the building-a-house scenario. 107

6.4 Recovery strategy targeting a delay in windows fitting in the building-a-

house scenario. 108

6.5 Code of the site prep contractor agent, with exception handling realized

through message passing. 110

6.6 Code of the engineer agent, with exception handling realized through

message passing. 111

6.7 Social scheme for producing a cake in the bakery scenario. 113

6.8 Recovery strategy targeting the ingredientsUnavailable exception

in the bakery organization. 114

6.9 Plans to handle an ingredientsUnavailable exception in the baker

agent. 115

6.10 Recovery strategy targeting the ovenBroken exception in the bakery

organization. 116

6.11 Missions for catching goals handling the ovenBroken exception in the

bakery organization. 117

6.12 Recovery strategy targeting the cakePreparationException in the

bakery organization. 118

6.13 Complex goal involving a choice. 119

6.14 Recovery strategy for concerted exception. 119

6.15 Social scheme realizing the Software Developer process. 126

6.16 Code of the first worker in the incident management scenario. 127

178 List of Listings

6.17 Code of the second worker in the incident management scenario. 128

6.18 Code of the developer manager agent in the incident management scenario.128

6.19 Recovery strategies for the Customer process in the Amazon order

fulfillment scenario. 131

6.20 Recovery strategy targeting a shortage of resources in the production

cell scenario. 135

6.21 Implementation of the feed belt agent in the production cell scenario. . . 136

6.22 Implementation of the robot agent in the production cell scenario. . . . 136

6.23 Recovery strategy targeting a motor break in the production cell scenario.137

6.24 Recovery strategy targeting the presence of a human operator in the

production cell scenario. 138

6.25 Agent plan to handle the presence of a human operator in the production

cell scenario. 139

6.26 Recovery strategy for the parcel delivery scenario. 140

List of Listings 179

	Titlepage
	Abstract
	Dedication
	Acknowledgements
	Publications
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Research Objective
	1.3 Thesis Outline

	2 Exception Handling
	2.1 Robustness through Exception Handling
	2.2 Exception Handling in Programming Languages
	2.2.1 Continuations

	2.3 Exception Handling in Distributed Systems
	2.3.1 The Actor Model and the Akka Framework
	2.3.2 Supervision in Akka
	2.3.3 Coordinated Atomic Actions

	2.4 Exception Handling in Business Process Management
	2.4.1 BPMN Basics
	2.4.2 Error Events
	2.4.3 Event Subprocesses

	2.5 Exception Handling in Self-Adaptive Systems

	3 Exception Handling in Multi-Agent Systems Literature
	3.1 Background on Multi-Agent Systems
	3.1.1 BDI Agents

	3.2 The Guardian
	3.3 Sentinels
	3.3.1 Sentinel-like Agents
	3.3.2 Sentinels in Agent-based Grid Computing

	3.4 SaGE in MaDKit
	3.5 An Agent Execution Model Encompassing Exceptions
	3.6 Exceptions and Commitment-based Protocols
	3.7 An Obligation-based Approach
	3.8 Failure Handling in SARL
	3.9 Fault Tolerance in Jason
	3.9.1 Contingency Plans
	3.9.2 Monitoring and Supervision in eJason

	4 A Proposal for Exception Handling in Multi-Agent Systems
	4.1 Challenges and Open Issues
	4.2 Exception Handling as Responsibility
	4.3 Multi-Agent Organizations
	4.3.1 Tasks, Responsibilities and Roles in MAOs
	4.3.2 Normative Organizations

	4.4 Introducing Exceptions
	4.4.1 Recovery Strategies
	4.4.2 Notification Policies and Throwing Tasks
	4.4.3 Exception Spec
	4.4.4 Handling Policies and Catching Tasks

	4.5 Exception Handling in Operation
	4.5.1 Exceptions Raised Collectively
	4.5.2 Exceptions Handled Collectively
	4.5.3 Recurrent Exception Handling

	5 Case Study: the JaCaMo Framework
	5.1 JaCaMo Basics
	5.1.1 Jason, CArtAgO and Moise
	5.1.2 Organizational Specification
	5.1.3 Organization Management Infrastructure
	5.1.4 Normative Programming

	5.2 Adding Exceptions
	5.2.1 Using Exceptions in the Organizational Specification
	5.2.2 Using Exceptions in Jason Agent Programming

	5.3 Implementation
	5.3.1 Extending the Specification's XML Schema
	5.3.2 Extending the Normative Program
	5.3.3 Extending the Organizational Artifacts

	6 Experimentation and Evaluation
	6.1 Feature Overview: a Robust House Building
	6.1.1 Handling Goal Failure Exceptions
	6.1.2 Handling Goal Delay Exceptions
	6.1.3 Exception Handling vs Message Passing

	6.2 Leveraging Feedback: Bakery
	6.2.1 Support for Collective Exception Handling
	6.2.2 Support for Concerted Exception Handling

	6.3 Comparing Exception Handling in JaCaMo and BPMN
	6.3.1 Translating BPMN Processes into JaCaMo Organizations
	6.3.2 Error Events as Recovery Strategies: Incident Management
	6.3.3 Modeling Recurrent Exception Handling: Order Fulfillment
	6.3.4 Capturing Other Kinds of Events

	6.4 Exception Handling in an Industrial Scenario: Production Cell
	6.4.1 Shortage of resources
	6.4.2 Motor Break
	6.4.3 Risk for Human Being

	6.5 Adapting to Adverse Conditions: Parcel Delivery
	6.6 Summary and Comparison with Previous Approaches

	7 Discussion and Future Directions
	7.1 Exception Handling and Accountability
	7.1.1 Accountability in the Human World
	7.1.2 Conceiving Exception Handling as Accountability

	7.2 Conclusion and Future Directions

	References

